Andrija PUHARICH
 Water Decomposition by AC Electrolysis

A. Puharich: "Cutting The Gordian Knot of the Great Energy Bind"

USP \# 4,394,230 ~ Method \& Apparatus for Splitting Water Molecules

Dr Andrija Puharich reportedly drove his motor home for hundreds of thousands of miles around North America in the 1970s using only water as fuel. At a mountain pass in Mexico, he collected snow for water. Here is the only article he wrote on the subject, plus his patent:

Cutting The Gordian Knot of the Great Energy Bind by Andrija Puharich

(1) Introduction ~

It is hardly necessary to weigh the value of the World Energy bank account for any sophisticated person, these days. It is grim. The oil reserves will dwindle away in a score of years or so, and the coal reserves will be gone in some twelve score years. (Ref. 1)

This is not to say that the outlook is hopeless. There is an abundance of alternative energy sources, but the economics of development and exploitation present an enormous short term strain on the world political and banking resources.

Visionary scientists tell us that the ideal fuel in the future will be as cheap as water, that it will be non toxic both in its short term, and in its long term, effects, that it will be renewable in that it can be used over and over again, that it will be safe to handle, and present minimal storage and transportation problems and costs. And finally that it will be universally available anywhere on earth.

What is this magical fuel, and why is it not being used? The fuel is water. It can be used in its fresh water form. It can be used in its salt water form. It can be used in its
brackish form. It can be used in its snow and ice form. When such water is decomposed by electrolytic fission into hydrogen and oxygen gases, it becomes a high energy fuel with three times the energy output which is available from an equivalent weight of high grade gasoline.
(Ref. 1) The interested reader should refer to the special issue of National Geographic, "Energy", February 1981.

Then why is water not being used as a fuel? The answer is simple. It costs too much with existing technology to convert water into gases hydrogen and oxygen. The basic cycle of using water for fuel is described in the following two equations, familiar to every high school student of Chemistry:
$\mathrm{H}_{2} \mathrm{O}$ Electrolysis +249.68 Btu Delta $\mathrm{G}==>\mathrm{H}_{2}+(1 / 2) \mathrm{O}_{2}$ per mole of water (1 mole $=18 \mathrm{gms}$.).

This means that it requires 249.688 Btu of energy (from electricity) to break water by electrocal fission into the gases hydrogen and oxygen.
H_{2} and $(1 / 2) \mathrm{O}_{2}===$ catalyst $===>\mathrm{H}_{2} \mathrm{O}$ - Delta H 302.375 Btu per mole of water. (2)

This means that 302.375 Btu of energy (heat or electricity) will be released when the gases, hydrogen and oxygen, combine. The end product (the exhaust) from this reaction is water. Note that more energy (under ideal conditions) is released from combining the gases than is used to free them from water. It is know that under ideal conditions it is possible to get some 20% more energy out of reaction (2) above, then it takes to produce the gases of reaction (1) above. Therefore, if reaction (1) could be carried out at 100% efficiency, the release of energy from reaction (2) in an optimally efficient engine (such as a low temperature fuel cell), there would be a net energy profit which would make the use of water as a fuel an economically feasible source of energy .

The cost of producing hydrogen is directly related to the cost of producing electricity. Hydrogen as produced today is generally a byproduct of off-peak-hour electrical production in either nuclear or hydroelectric plants. The electricity thus produced is the cheapest way of making hydrogen. We can compare the cost of production of electricity and the cost of producing hydrogen. The following table is adapted from Penner (Ref. 2) whose data source is based on Federal Power Commission, and American Gas Association Figures of 1970 and on a 1973 price evaluation (just before OPEC oil price escalation.)

Table 1: Relative Prices in Dollars per 10^{6} Btu. See Appendix 1 for definition of British Thermal units (a) @ 9.1 mils/kWh

Cost Component ~ Electricity ~ Electrolytically-Produced H
Production ~ 2.67 (b) ~ 2.95 to 3.23 (b)
Transmission $\sim 0.61 \sim 0.52$ (c)
Distribution ~ $1.61 \sim 0.34$
Total Cost $\sim \$ 4.89 \sim \$ 3.81$ to $\$ 4.09$

If we compare only the unit cost of production of electricity vs Hydrogen from the above table:
$10^{6} \mathrm{Btu} \mathrm{H}_{2} / 10^{6} \mathrm{BtuEl}=\$ 3.23 / \$ 2.67$, or 20.9% higher cost, H_{2}
(Ref. 2) Penner, S.S. \& L. Iceman: Non Nuclear Technologies, Vol II, AddisonWesley Publishing Company, 1977, Chap. 11, and Table 11.1-2 (Page 132).

It must also be noted that the price of natural gas is much cheaper than either electricity or hydrogen, but because of the price fluctuations due to recent deregulation of gas. It is not possible to present a realistic figure.

In the opinion of Penner (op. cit.), if the hydrogen production cost component of its total cost could be reduced three fold, it would become a viable alternate energy source. In order to achieve such a three-fold reduction in production costs, several major breakthroughs would have to occur.
(1) ENDERGONIC REACTION ~ (1) supra. A technological breakthrough that permits 100% conversion efficiency of water by electrolysis fission into the two gases, Hydrogen as fuel and Oxygen as oxidant.
(2) HYDROGEN PRODUCTION, in situ. A technological breakthrough that eliminates the need and cost of hydrogen liquefaction and storage, transmission, and distribution, by producing the fuel in situ, when and where needed.
(3) EXERGONIC REACTION ~ (2) supra. A technological breakthrough which yields a 100% efficient energy release from the combination of hydrogen and oxygen into water in an engine that can utilize the heat, steam, or electricity thus produced.
(4) ENGINE EFFICIENCY. By a combination of the breakthroughs outlined above, (1), (2), and (3) utilized in a highly efficient engine to do work, it is possible to achieve a 15% to 20% surplus of energy return over energy input, theoretically.

It is of interest to record that a new invention is now being developed to realise the above outlined goal of cheap, clean renewable and high grade energy.

A Thermodynamic Device has been invented which produces hydrogen as fuel, and oxygen as oxidant, from ordinary or from sea water, eliminating the cost and hazard of liquefaction, storage, transmission, and distribution. The saving of this aspect of the invention alone reduces the total cost of hydrogen by about 25%.

This Thermodynamic Device is based on a new discovery --- the efficient electrolytic fission of water into hydrogen gas and oxygen gas by the use of low frequency alternating currents as opposed to the conventual use of direct current, or ultra-high frequency current today. Such gas production from water by electrolytic fission approaches 100% efficiency under laboratory conditions and measurements. No laws of physics are violated in this process.

This Thermodynamic Device has already been tested at ambient pressures and temperatures from sea level to an altitude of 10,000 feet above sea level without any
loss of its peak efficiency. The device produces two types of gas bubbles; one type of bubble contains hydrogen gas; the other type contains oxygen gas. The two gases are thereafter easily separable by passive membrane filters to yield pure hydrogen gas, and pure oxygen gas.

The separate gases are now ready to be combined in a chemical fusion with a small activation energy such as that from a catalyst or an electrical spark, and yield energy in the form of heat, or steam, or electricity --- as needed. When the energy is released by the chemical fusion of hydrogen and oxygen, the exhaust product is clean water. The water exhaust can be released into nature and then renewed in its energy content by natural processes of evaporation, solar irradiation in cloud form, an subsequent precipitation as rain on land or sea, and then collected again as a fuel source. Or, the exhaust water can have its energy content pumped up by artificial processes such as through solar energy acting through photocells. Hence, the exhaust product is both clean and renewable. The fuel hydrogen, and the oxidant oxygen, can be used in any form of heat engine as an energy source if economy is not an important factor. But the practical considerations of maximum efficiency dictate that a low temperature fuel cell with its direct chemical fusion conversion from gases to electricity offers the greatest economy and efficiency from small power plants (less than 5 kilowatts).

For large power plants, steam and gas turbines are the ideal heat engines for economy and efficiency. With the proper engineering effort, automobiles could be converted rather easily to use water as the main fuel source.
(2) A Elementry Introduction to the Design \& Operation of the Thermodynamic Device to Electrolyse Water with $A C$ ~

The Thermodynamic Device (TD) is made up of three principal components: An electrical function generator, Component I, that energizes a water cell, the TD, Component II and Component III, a weak electrolyte.

COMPONENT I: The Electrical Function Generator ~ See Fig 1.
Figure 1: Signal Generator Component Block~

This electronic device has a complex alternating current output consisting of an audio frequency (range 20 to 200 Hz) amplitude modulation of a carrier wave (range: 200 to $100,000 \mathrm{~Hz}$). The output is connected by two wires to Component II at the center electrode, and at the ring electrode. See Fig1. The impedance of this output signal is continuously being matched to the load which is the water solution in Component II.

COMPONENT II: The Thermodynamic Device (TD). See Figure 2.
Figure 2: Thermodynamic Device (TD) ~

The TD is fabricated of metals and ceramic in the geometric form of a coaxial cylinder made up of a centered hollow tubular electrode which is surrounded by a larger tubular steel cylinder. These two electrodes comprise the coaxial electrode system energised by Component I. The space between the two electrodes is, properly speaking, Component III which contains the water solution to be electrolysed. The center hollow tubular electrode carries water into the cell, and is further separated from the outer cylindrical electrode by a porous ceramic vitreous material. The space between the two electrodes contains two lengths of tubular Pyrex glass, shown in Figures 2 and 3. The metal electrode surface in contact with the water solution are coated with a nickel alloy.

COMPONENT III: the weak electrolyte water solution. Fig. 3
Figure 3: The Water Cell Section of Component II ~

This consists of the water solution, the two glass tubes, and the geometry of the containing wall of Component II. It is the true load for Component I , and its electrode of Component II.

The Component III water solution is more properly speaking, ideally a 0.1540 M Sodium Chloride solution, and such is a weak electrolyte. In figure 4 we show the hypothetical tetrahedral structure of water molecule, probably in the form in which the complex electromagnetic waves of Component I to see it. The center of mass of this tetrahedral form is the oxygen atom. The geometric arrangement of the p electrons of oxygen probably determine the vectors $\mathrm{i}\left(\mathrm{L}_{1}\right)$ and $\mathrm{i}\left(\mathrm{L}_{2}\right)$ and $\mathrm{i}\left(\mathrm{H}_{1}\right)$ and i $\left(\mathrm{H}_{2}\right)$ which in turn probably determine the tetrahedral architecture of the water molecule. The p electron configuration of oxygen is shown in Figure 5. Reference to Figure 4 shows that the diagonal of the right side of the cube has at its corner terminations the positive charge hydrogen $(\mathrm{H}+)$ atoms; and that the left side of the cube diagonal has at its corners the lone pair electrons, $\left(e^{-}\right)$. It is to be further noted that this diagonal pair has an orthonormal relationship.

Figure 4: The Water Molecule in Tetrahedral Form ~

Hydrogen bonding occurs only along the four vectors pointing to the four vertices of a regular tetrahedron, and in the above drawing we show the four unit vectors along these directions originating from the oxygen atoms at the center. $i\left(\mathrm{H}_{1}\right)$ and $i\left(\mathrm{H}_{2}\right)$ are the vectors of the hydrogen bonds formed by the molecule i as a donor molecule. These are assigned to the lone pair electrons. Molecules i are the neighboring oxygen atoms at each vertex of the tetrahedron.

Figure 5: Electron Orbitals ~

(3) Electrothermodynamics ~

We will now portray the complex electromagnetic wave as the tetrahedral water molecule sees it. The first effect felt by the water molecule is in the protons of the vectors, $\mathrm{i}\left(\mathrm{H}_{1}\right)$ and $\mathrm{i}\left(\mathrm{H}_{2}\right)$. These protons feel the 3 second cycling of the amplitude of the carrier frequency and its associated side bands as generated by Component I. This sets up a rotation moment of the proton magnetic moment which one can clearly see on the XY plot of an oscilloscope, as an hysteresis loop figure. However, it is noted that this hysteresis loop does not appear in the liquid water sample until all the parameters of the three components have been adjusted to the configuration which is the novel basis of this device. The hysteresis loop gives us a vivid portrayal of the nuclear magnetic relaxation cycle of the proton in water.

The next effect felt by the water molecule is the Component I carrier resonant frequency, F_{0}. At the peak efficiency for electrolysis the value of F_{o} is $600 \mathrm{~Hz}+/-5$ Hz.

This resonance however is achieved through control of two other factors. The first is the molal concentration of salt in the water. This is controlled by measuring the conductivity of the water through the built in current meter of Component I. There is maintained an idea ratio of current to voltage $\mathrm{I} / \mathrm{E}=0.01870$ which is an index to the optimum salt concentration of 0.1540 Molal.

The second factor which helps to hold the resonant which helps to hold the resonant frequency at 600 Hz is the gap distance of Y , between the centre electrode, and the ring electrode of Component II.

This gap distance will vary depending on the size scale of Component II, but again the current flow, I, is used to set it to the optimal distance when the voltage reads between $2.30(\mathrm{rms})$ volts, at resonance F_{o}, and at molal concentration, 0.1540 . The molal concentration of the water is thus seen to represent the electric term of the water molecule and hence its conductivity.

The amplitude modulation of the carrier gives rise to side bands in the power spectrum of the carrier frequency distribution. It is these side bands which give rise to an acoustic vibration of the liquid water, and it is believed to the tetrahedral water molecule. The importance of the phonon effect --- the acoustic vibration of water in electrolysis --- was discovered in a roundabout way. Research work with Component I had earlier established that it could be used for the electro-stimulation of hearing in humans. When the output of Component I is comprised of flat circular metal plates applied to the head of normal hearing humans, it was found that they could hear pure tones and speech. Simultaneously, acoustic vibration could also be heard by an outside observer with a stethoscope placed near one of the electrodes on the skin. It was observed that the absolute threshold of hearing could be obtained at 0.16 mW (rms), and by calculation that there was an amplitude of displacement of the eardrum of the order of 10^{-11} and a corresponding amplitude of the cochlear basilar membrane of 10^{-13} meter. Corollary to this finding. I was able to achieve the absolute reversible threshold of electrolysis at a power level of 0.16 mW (rms). By carrying out new calculations I was able to show that the water was being vibrated with a displacement of the order of 1 Angstrom ($=10^{-10}$ meters). This displacement is of the order of the diameter of the hydrogen atom.

Thus it is possible that the acoustic phonons generated by audio side bands of the carrier are able to vibrate particle structures within the unit water tetrahedron.

We now turn to the measurement problem with respect to efficiency of electrolysis. There are four means that can be used to measure the reactant product of water electrolysis . For simple volume measurements one can use a precision nitrometer such as the Pregl type. For both volume and quantitative analysis one can use the gas chromatography with thermal conductivity detector. For a continuous flow analysis of both volume and gas species the mass spectrometer is very useful. For pure thermodynamic measurements the calorimeter is useful. In our measurements, all four methods were examined, and it was found that the mass spectrometer gave the most flexibility and the greatest precision. In the next section we will describe our measurement using the mass spectrometer.

Protocol

(4) Methodology for the Evaluation of the Efficiency of Water Decomposition by Means of Alternating Current Electrolysis ~

All systems used today for the electrolysis of water into hydrogen as fuel, and oxygen as oxidant apply direct current to a strong electrolyte solution. These systems range in efficiency from 50% to 71%. The calculation of energy efficiency in electrolysis is defined as follows:
"The energy efficiency is the ration of the energy released from the electrolysis products formed (when they are subsequently used) to the energy required to effect electrolysis." (Ref. 1)

The energy released by the exergonic process under standard conditions
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})===>\mathrm{H}_{2} \mathrm{O}=302.375 \mathrm{Btu}$
which is $68.315 \mathrm{Kcal} / \mathrm{mol}$. or, 286,021 Joules $/ \mathrm{mol}$, and is numerically equal to the enthalphy charge (Delta H) for the indicated process. On the other hand the minimum energy (or useful work input) required at constant temperature and pressure for electrolysis equals the Gibbs free energy change (Delta G). (Ref 2)
(Ref. 1) S.S. Penner and L. Iceman: Energy. Volume II , Non Nuclear Energy Technologies. Adison Wesley Publishing Company, Inc.Reading Massachusetts, 1977 (Rev. Ed.) chapter 11.
(Ref. 2) S.S. Penner: Thermodynamics, Chapter 11, Addison-Wesley Publishing Co. Reading, Massachusetts, 1968.

Penner shows (op.cit.) that there is a basic relation derivable from the first and second laws of thermodynamics for isothermal changes which shows that

Delta G = Delta H - T Delta S
where Delta S represents the entropy change for the chemical reaction and T is the absolute temperature.

The Gibbs free energy change (Delta G) is also related to the voltage (e) required to implement electrolysis by Faraday's equation,
$e=($ Delta G / 23.06 n$)$ volts
where Delta G is in $\mathrm{Kcal} / \mathrm{mol}$, and n is the number of electrons (or equivalents) per mole of water electrolysed and has the numerical value 2 in the equation (endergonic process),
$\mathrm{H}_{2} \mathrm{O}==>\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})+56.620 \mathrm{kcal}$ or +249.68 Btu
Therefore, according to equation (2) at atmospheric pressure, and 300 degrees K , Delta $\mathrm{H}=68.315 \mathrm{kcal} / \mathrm{mol}$ or $\mathrm{H}_{2} \mathrm{O}$, and Delta $\mathrm{G}=56.620 \mathrm{kcal} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}=$ $236,954 \mathrm{~J} / \mathrm{mol} \mathrm{H}_{2} 0$ for the electrolysis of liquid water.

In view of these thermodynamic parameters for the electrolysis of water into gases, hydrogen and oxygen, we can establish by Eq.(2) numeric values where,

Delta $\mathrm{G}=236.954 \mathrm{~J} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}$
under standard conditions. Thus
$\mathrm{n}=$ Delta $\mathrm{G}(\mathrm{J} / \mathrm{mol}) /$ Delta Ge $(\mathrm{J} / \mathrm{mol})=<1$
where Delta G_{e} is the electrical energy input to $\mathrm{H}_{2} \mathrm{O}$ (1) in Joules, and Delta G is the Gibbs free energy of $\mathrm{H}_{2} \mathrm{O}$. The conversion between the two quantities is one Watt second (Ws) = one Joule.

Or, in terms of gas volume, as hydrogen, produced and measured,
$\mathrm{n}=$ Measured $\mathrm{H}_{2}(\mathrm{cc}) /$ Ideal $\mathrm{H}_{2}(\mathrm{cc})=<1$
In accordance with these general principles we present the methodology followed in evaluating the electrolytic of alternating current on $\mathrm{H}_{2} \mathrm{O}$ in producing the gases, hydrogen and oxygen. No attempt has been made to utilize these gases according to the process of Eq.(1). It is to be noted that the process
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})==\Rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
yields only $57.796 \mathrm{kcal} / \mathrm{mol}$. Eq.(7) shows that per mole of gases water formed at $300^{\circ} \mathrm{K}$, the heat released is reduced from the $68.315 \mathrm{kcal} / \mathrm{mol}$ at Eq. (1) by the molar heat of evaporation of water at $300^{\circ} \mathrm{K}(10.5 \mathrm{kcal})$ and the overall heat release is $57.796 \mathrm{kcal} / \mathrm{mol}^{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is formed at $300^{\circ} \mathrm{K}$. (Ref. 1)

In the following sections we describe the new method of electrolysis by means of alternating current, and the exact method and means used to measure the endergonic process of Eq.(4) and the governing Eq.(2) and Eq.(5).
(Ref. 1) Op.cit., Ref. (1) page 3. page 299ff.

(5) Thermodynanic Measurement ~

In order to properly couple Component II to a mass spectrometer one requires a special housing around Component II that it will capture the gases produced and permit these to to be drawn under low vacuum into the mass spectometer. Therefore a stainless steel and glass chamber was built to contain Component II, and provision made to couple it directly through a CO_{2} watertrap to the mass spectrometer with the appropriate stainless steel tubing. This chamber is designated as Component IV. Both the mass spectrometer and Component IV were purged with helium and evacuated for a two hour period before any gas samples were drawn. In this way contamination was minimized. The definitive measurement were done at Gollob Analytical Services in Berkeley Heights, New Jersey

We now describe the use of Component I and how its energy output to Component II is measured. The energy output of Component I is an amplitude modulated alternating current looking into a highly non-linear load, i.e., the water solution. Component I is so designed that at peak load it is in resonance across the system --Components I, II, and III --- and the vector diagrams show that the capacitive
reactance, and the inductance reactance are almost exactly 180° out of phase, so that the net power output is reactive (the dissipative power is very small). This design ensures minimum power lossses across the entire output system. In the experiments to be described, the entire emphasis is placed on achieving the maximum gas yield (credit) in exchange for the minimum applied electrical energy.

The most precise way to measure the applied energy from Component I to Component II and Component III is to measure the power, P, in watts, W. Ideally this should be done with a precision wattmeter. But since we were interested in following the voltage and current separately, it was decided not to use the watt meter. Separate meters were used to continuously monitor the current and the volts.

This is done by precision measurement of the volts across Component III as root mean square (rms) volts; and the current flowing in the system as rms amperes. Precisely calibrated instruments were used to take these two measurements. A typical set of experiments using water in the form of 0.9% saline solution 0.1540 molar to obtain high efficiency hydrolysis gave the following results:
rms Current $=\mathrm{I}=25 \mathrm{~mA}$ to 38 mA (0.025 A to 0.038 A .)
rms Volts $=\mathrm{E}=4$ Volts to 2.6 Volts
The resultant ration between current and voltage is dependent on many factors such as the gap distance between the center and ring electrodes, dielectric properties of the water, conductivity properties of the water, equilibrium states, isothermal conditions, materials used, and even the pressure of clathrates. The above current and voltage values reflect the net effect of various combinations of such parameters. When one takes the product of rms current, and rms volts, one has a measure of the power, P in watts.
$\mathrm{P}=\mathrm{I} \times \mathrm{E}=25 \mathrm{~mA} \times 4.0$ volts $=100 \mathrm{~mW}(0.1 \mathrm{~W})$
and $\mathrm{P}=\mathrm{I} \times \mathrm{E}=38 \mathrm{~mA} \times 2.6$ volts $=98.8 \mathrm{~mW}(0.0988 \mathrm{~W})$

At these power levels (with load), the resonant frequency of the system is 600 Hz (plus or minus 5 Hz) as measured on a precision frequency counter. The wave form was monitored for harmonic content on an oscilloscope, and the nuclear magnetic relaxation cycle was monitored on an XY plotting oscilloscope in order to maintain the proper hysteresis loop figure. All experiments were run so that the power in watts, applied through Components I, II, and III ranged between 98.8 mW to 100 mW .

Since by the International System of Units 1971 (ST), one Watt-second (Ws) is exactly equal to one Joule (J), our measurements of efficiency used these two yardsticks ($1 \mathrm{Ws}=1 \mathrm{~J}$) from the debit side of the measurement.

The energy output of the system is, of course, the two gases, Hydrogen $\left(\mathrm{H}_{2}\right)$ and Oxygen, ($1 / 2$) O_{2}, and this credit side was measured in two laboratories, on two kinds of calibrated instruments, namely gas chromatography machine, and mass spectrometer machine.

The volume of gases H_{2} and $(1 / 2) \mathrm{O}_{2}$ was measured as produced under standard conditions of temperature and pressure in unit time, i.e., in cubic centimeters per minute (cc/min), as well as the possibility contaminating gases,such as air oxygen, nitrogen and argon, carbon monoxide, carbon dioxide, water vapor, etc.

The electrical and gas measurements were reduced to the common denominator of Joules of energy so that the efficiency accounting could all be handled in one currency. We now present the averaged results from many experiments. The standard error between different samples, machines, and locations is at $+/-10 \%$, and we only use the mean for all the following calculations.

II. Thermodynamic Efficiency for the Endergonic Decomposition of Liquid Water (Salininized) to Gases Under Standard Atmosphere (754 to 750 m.m. Hg) and Standard Isothermal Conditions @ $25^{\circ} \mathrm{C}=77^{\circ} \mathrm{F}=298.16^{\circ} \mathrm{K}$, According to the Following Reaction:

$\mathrm{H}_{2} 0(1){ }_{-}>\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(1)+$ Delta $\mathrm{G}=56.620 \mathrm{Kcal} / \mathrm{mole}$
As already described, Delta G is the Gibbs function. We convert Kcal to our common currency of Joules by the formula, One Calorie $=4.1868$ Joules

Delta $\mathrm{G}=56.620 \mathrm{Kcal} \mathrm{x} 4.1868 \mathrm{~J}=236,954 / \mathrm{J} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$ where $1 \mathrm{~mole}=18$ gr.

Delta $\mathrm{G}_{\mathrm{e}}=$ the electrical energy required to yield an equivalent amount of energy from $\mathrm{H}_{2} \mathrm{O}$ in the form of gases H_{2} and $(1 / 2) \mathrm{O}_{2}$.

To simplify our calculation we wish to find out how much energy is required to produce the 1.0 cc of $\mathrm{H}_{2} \mathrm{O}$ as the gases H_{2} and $(1 / 2) \mathrm{O}_{2}$. There are (under standard conditions) $22,400 \mathrm{cc}=\mathrm{V}$ of gas in one mole of $\mathrm{H}_{2} \mathrm{O}$. Therefore

Delta G / V $=236,954 \mathrm{~J} / 22,400 \mathrm{cc}=10.5783 \mathrm{~J} / \mathrm{cc}$.
We now calculate how much electrical energy is required to liberate 1.0 cc of the $\mathrm{H}_{2} \mathrm{O}$ gases (where $\mathrm{H}_{2}=0.666$ parts, and ($1 / 2$) $\mathrm{O}_{2}=0.333$ parts by volume) from liquid water. Since $\mathrm{P}=1 \mathrm{Ws}=1$ Joule, and $\mathrm{V}=1.0 \mathrm{cc}$ of gas $=10.5783$ Joules, then
$\mathrm{PV}=1 \mathrm{Js} \times 10.5783 \mathrm{~J}=10.5783 \mathrm{Js}$, or, $=10.5783 \mathrm{Ws}$
Since our experiments were run at 100 mW (0.1 W) applied to the water sample in Component II, III, for 30 minutes, we wish to calculate the ideal (100% efficient) gas production at this total applied power level. This is,
$0.1 \mathrm{Ws} \times 60 \mathrm{sec} \times 30 \mathrm{~min}=180,00$ Joules (for 30 min .). The total gas production at ideal 100% efficiency is $180 \mathrm{~J} / 10.5783 \mathrm{~J} / \mathrm{cc}=17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{g})$

We further wish to calculate how much hydrogen is present in the $17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{g})$.

$$
\begin{equation*}
17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{~g}) \times 0.666 \mathrm{H}_{2}(\mathrm{~g})=11.329 \mathrm{cc} \mathrm{H}_{2}(\mathrm{~g}) \tag{14}
\end{equation*}
$$

$17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{g}) \times 0.333(1 / 2) \mathrm{O}_{2}(\mathrm{~g})=5.681 \mathrm{cc}(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
Against this ideal standard of efficiency of expected gas production, we must measure the actual amount of gas produced under: (1) Standard conditions as defined above, and (2) 0.1 Ws power applied over 30 minutes. In our experiments, the mean amount of H_{2} and $(1 / 2) \mathrm{O}_{2}$ produced, as measured on precision calibrated GC, and MS machines in two different laboratories, where SE is $+/-10 \%$, is,

Measured Mean $=10.80 \mathrm{cc} \mathrm{H}_{2}(\mathrm{~g})$
Measured Mean $=5.40 \mathrm{cc}(1 / 2) \mathrm{cc}(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
Total Mean $=16.20 \mathrm{cc}_{2} \mathrm{O}(\mathrm{g})$
The ratio, n, between the ideal yield, and measured yield,
Measured $\mathrm{H}_{2}(\mathrm{~g}) /$ Ideal $\mathrm{H}_{2}(\mathrm{~g})=10.80 \mathrm{cc} / 11.33 \mathrm{cc}=91.30 \%$
(6) Alternative Methodology for Calculating Efficiency Based on the Faraday Law of Electrochemistry ~

This method is based on the number of electrons that must be removed, or added to decompose, or form one mole of, a substance of valence one. In water $\mathrm{H}_{2} \mathrm{O}$, one mole has the following weight:
$\mathrm{H}=1.008 \mathrm{gr} / \mathrm{mol}$
$\mathrm{H}=1.008 \mathrm{gr} / \mathrm{mol}$
$\mathrm{O}=15.999 \mathrm{gr} / \mathrm{mol}$
Thus, $1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=18.015 \mathrm{gr} / \mathrm{mol}$
For a unvalent substance one gram mole contains 6.022×10^{-23} electrons $=\mathrm{N}=$ Avogadro's Number. If the substance is divalent, trivalent, etc., N is multiplied by the number of the valence. Water is generally considered to be of valence two.

At standard temperature and pressure (STP) one mole of a substance contains 22.414 cc, where Standard temperature is $273.15^{\circ} \mathrm{K}=0^{\circ} \mathrm{C}=\mathrm{T}$. Standard Pressure is one atmosphere $=760 \mathrm{~mm} \mathrm{Hg}=\mathrm{P}$.

One Faraday $(1 F)$ is 96,485 Coulombs per mole (univalent).
One Coulomb (C) is defined as:
$1 \mathrm{~N} / 1 F=6.122 \times 10^{23}$ Electrons $/ 96,485 \mathrm{C}=$ one C
The flow of one $\mathrm{C} /$ second $=$ one Ampere.
One C x one volt = one Joule second (Js).
One Ampere per second @ one volt = one Watt = one Joule.
In alternating current, when amps (I) and Volts (E) are expressed in root mean squares (rms), their product is Power.
$P=I E$ watts.

With these basic definitions we can now calculate efficiency of electrolysis of water by the method of Faraday is electrochemistry.

The two-electron model of water requires 2 moles of electrons for electrolysis (2 x 6.022×10^{23}), or two Faraday quantities ($2 \times 96,485=192,970$ Coulombs).

The amount of gas produced will be:
$\mathrm{H}_{2}=22,414 \mathrm{cc} / \mathrm{mol}$ at STP
$(1 / 2) \mathrm{O}_{2}=11,207 \mathrm{cc} / \mathrm{mol}$ at STP
Gases $=33.621 \mathrm{cc} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The number of coulombs required to produce one cc of gases by electrolysis of water:

193,970 C / $33621 \mathrm{C}=5.739567 \mathrm{C}$ per cc gases.
Then, $5,739 \mathrm{C} / \mathrm{cc} / \mathrm{sec}=5.739 \mathrm{amp} / \mathrm{sec} / \mathrm{cc}$. How many cc of total gases will be produced by $1 \mathrm{~A} / \mathrm{sec}$?
0.1742291709 cc .

How many cc of total gases will be produced by $1 \mathrm{~A} / \mathrm{min}$?
$10.45375 \mathrm{cc} / \mathrm{min}$
What does this represent as the gases H_{2} and O_{2} ?
$(1 / 2) \mathrm{O}_{2}=3.136438721 \mathrm{cc} / \mathrm{Amp} / \mathrm{min}$.
$\mathrm{H}_{2}=6.2728 \mathrm{cc} / \mathrm{Amp} / \mathrm{min}$.
We can now develop a Table for values of current used in some of our experiments, and disregarding the voltage as is done conventionally.
I. Calculations for 100 mA per minute:

Total Gases $=1.04537 \mathrm{cc} / \mathrm{min}$
$\mathrm{H}_{2}=0.6968 \mathrm{cc} / \mathrm{min}$
$(1 / 2) \mathrm{O}_{2}=0.3484 \mathrm{cc} / \mathrm{min}$
$30 \mathrm{~min} . \mathrm{H}_{2}=20.9054 \mathrm{cc} / 30$ minutes
II. Calculations for 38 mA per minute:

Total Gases $=0.3972 \mathrm{cc} / 30$ minutes
$\mathrm{H}_{2}=0.2645 \mathrm{cc} / \mathrm{min}$
$(1 / 2) \mathrm{O}_{2}=0.1323 \mathrm{cc} / \mathrm{min}$
$30 \mathrm{~min} . \mathrm{H}_{2}=7.9369 \mathrm{cc} / \mathrm{min}$
III. Calculations for 25 mA per minute:
$30 \mathrm{~min} . \mathrm{H}_{2}=5.2263 \mathrm{cc} /$ minute
(7) Conclusion ~

Figure 6 and 7 [not available] show two of the many energy production systems that may be configured to include renewable sources and the present electrolysis technique. Figure 6 shows a proposed photovoltaic powered system using a fuel cell as the primary battery. Assuming optimum operating conditions using 0.25 watt seconds of energy from the photovoltaic array would enable 0.15 watt seconds to be load.

Figure 7 depicts several renewable sources operating in conjuncction with the electrolysis device to provide motive power for an automobile.

US Patent \# 4,394,230
Method \& Apparatus for Splitting Water Molecules

Henry K. Puharich

(July 19, 1983)

Abstract

~ Disclosed herein is a new and improved thermodynamic device to produce hydrogen gas and oxygen gas from ordinary water molecules or from seawater at normal temperatures and pressure. Also disclosed is a new and improved method for electrically treating water molecules to decompose them into hydrogen gas and oxygen gas at efficiency levels ranging between approximately $80-100 \%$. The evolved hydrogen gas may be used as a fuel; and the evolved oxygen gas may be used as an oxidant.

Inventors: Puharich; Henry K. (Rte. 1, Box 97, Delaplane, VA 22025) Appl. No.: 272277 ~ Filed: June 10, 1981 Current U.S. Class: 205/341; 204/229.5; 204/260; 204/263; 204/266; 205/628 Intern'l Class: C25B 001/04; C25B 001/10; C25B 009/04 Field of Search: 204/129,228,260,263,266 References Cited [Referenced By] ~ U.S. Patent Documents: 3,563,246 Feb., 1971 ~ Puharich 331/47. 3,726,762 Apr., $1973 \sim$ Puharich 128/422. 4,107,008 Aug., $1978 \sim$ Horvath 204/129. Primary Examiner: Andrews; R. L. ~ Attorney, Agent or Firm: Mandeville and Schweitzer

\section*{Description ~}

BACKGROUND OF THE INVENTION

The scientific community has long realized that water is an enormous natural energy resource, indeed an inexhaustible source, since there are over 300 million cubic miles of water on the earth's surface, all of it a potential source of hydrogen for use as fuel. In fact, more than 100 years ago Jules Verne prophesied that water eventually would be employed as a fuel and that the hydrogen and oxygen which constitute it would furnish an inexhaustible source of heat and light.

Water has been split into its constituent elements of hydrogen and oxygen by electrolytic methods, which have been extremely inefficient, by thermochemical extraction processes called thermochemical water-splitting, which have likewise been inefficient and have also been inordinately expensive, and by other processes including some employing solar energy. In addition, artificial chloroplasts imitating the natural process of photosynthesis have been used to separate hydrogen from water utilizing complicated membranes and sophisticated artificial catalysts. However, these artificial chloroplasts have yet to produce hydrogen at an efficient and economical rate.

These and other proposed water splitting techniques are all part of a massive effort by the scientific community to find a plentiful, clean, and inexpensive source of fuel. While none of the methods have yet proved to be commercially feasible, they all share in common the known acceptability of hydrogen gas as a clean fuel, one that can be transmitted easily and economically over long distances and one which when burned forms water.

SUMMARY OF THE PRESENT INVENTION

In classical quantum physical chemistry, the water molecule has two basic bond angles, one angle being 104°, and the other angle being $109^{\circ} 28^{\prime}$.

The present invention involves a method by which a water molecule can be energized by electrical means so as to shift the bond angle from the 104°. degree. configuration to the 109°. degree. 28^{\prime} tetrahedral geometrical configuration.

An electrical function generator (Component 1) is used to produce complex electrical wave form frequencies which are applied to, and match the complex resonant frequencies of the tetrahedral geometrical form of water.

It is this complex electrical wave form applied to water which is contained in a special thermodynamic device (Component II) which shatters the water molecule by resonance into its component molecules --- hydrogen and oxygen.

The hydrogen, in gas form, may then be used as fuel; and oxygen, in gas form is used as oxidant. For example, the thermodynamic device of the present invention may be used as a hydrogen fuel source for any existing heat engine --- such as, internal combustion engines of all types, turbines, fuel cell, space heaters, water heaters, heat exchange systems, and other such devices. It can also be used for the desalinization of sea water, and other water purification purposes. It can also be applied to the development of new closed cycle heat engines where water goes in as fuel, and water comes out as a clean exhaust.

For a more complete understanding of the present invention and for a greater appreciation of its attendant advantages, reference should be made to the following detailed description taken in conjunction with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustrating the electrical function generator, Component I, employed in the practice of the present invention;

FIG. 2 is a schematic illustration of the apparatus of the present invention, including a cross sectional representation of the thermodynamic device, Component II;

FIG. 3 is a cross-sectional view of Component III of the present invention, the water cell section of Component II;

FIG. 4 is an illustration of the hydrogen covalent bond;

FIG. 4A is an illustration of the hydrogen bond angle;

FIG. 4B is an illustration of hybridized and un-hybridized orbitals;

FIG. 4C is an illustration of the geometry of methane ammonia and water molecules;

HYBRIDIZED METHANE MOLECULE CH/4

HYERIDIZED WATER MOLFCULE H2O
GEOMETRY OF METHANE,
AMMONIA, AND WATER MOLECULES

FIG. 5 is an illustration of an amplitude modulated carrier wave;

AMPLITUDE MODULATED 9O CARRIER SINE WAVE

FIG. 6 is an illustration of a ripple square wave;
FIG. 6 A is an illustration of unipolar pulses;

FIG． 7 is a diagram showing ion distribution at the negative electrode；

> 下エ ほ_7_
> DIAGRAM OF THE DOUBLE LAYER GLOSE TO A NEGATIVE ELECTRODE. THE POTENTIAL ENERGY OF POSITIVE IONS IN THIS REGION WHEN NO CURRENT IS FLOWING $1 S$ SHOWN INTHE LOWER DIAGRAM. 期- B IS THE ELECTPONTRANSFER POTENTIAL: 必-中, 15 RELATED TO THE ACTIVATION OVERPOTENTIAL: AND $\phi,-\phi_{0}$ 15 RELATED TO THE DIFFUSION OVERPOTENTIAL.
KEY
Q SOLVENT MOLECULE＝$H_{2} O$
© POSITIVE ION＝H^{+}
－NEGATIVE ION O^{-}

FIG． 8 is an illustration of tetrahedral bonding orbitals；

TIIE

EQUIVALENT TETRAHEDRAL BONDING ORBITALS OF WATER

(a)

(b)

METHANE OVERLAP OF SPHERICAL Is ORBITAL OF HYDROGEN WITH sp 3 BONDING ORBITALSOF CARBON (a) RESULTS IN EQUIVALENT SIGMA BONDS, THE MOLECULAR ORBITALS of (b).

FIG. 9 is an illustration of water molecules;

FIG. 10 is an illustration of productive and non-productive collisions of hydrogen with iodine;

FIG. 11 is a wave form found to be the prime characteristic for optimum efficiency;

FIG. 12 is an illustration of pearl chain formation;

FIG. 13 is a plot of the course of the onset of the barrier effect and the unblocking of the barrier effect; and

FIGS. 14A, B, and C are energy diagrams for exergonic reactions.

DETAILED DESCRIPTION OF INVENTION

Section 1 --- Apparatus of Invention
The apparatus of the invention consists of three components, the electrical function generator, the thermodynamic device, and the water cell.

COMPONENT I. The Electrical Funtion Generator ~
This device has an output consisting of an audio frequency (range 20 to 200 Hz) amplitude modulation of a carrier wave (range 200 Hz to $100,000 \mathrm{~Hz}$). The impedance of this output signal is continuously being matched to the load which is the second component, the thermodynamic device.

The electrical function generator represents a novel application of circuitry disclosed in my earlier U.S. Pat. Nos. 3,629,521; 3,563,246; and 3,726,762, which are incorporated by reference herein. See FIG. 1 for the block diagram of Component I.

COMPONENT II. The Thermodynamic Device ~

The thermodynamic device is fabricated of metals and ceramic in the geometric form of coaxial cylinder made up of a centered hollow tubular electrode which is surrounded by a larger tubular steel cylinder, said two electrodes comprising the coaxial electrode system which forms the load of the output of the electrical function generator, Component I. Said center hollow tubular electrode carries water, and is separated from the outer cylindrical electrode by a porous ceramic vitreous material. Between the outer surface of the insulating ceramic vitreous material, and the inner surface of the outer cylindrical electrode exists a space to contain the water to be electrolysed. This water cell space comprises the third component (Component III) of the invention. It contains two lengths of tubular pyrex glass, shown in FIGS. 2 and 3. The metal electrode surfaces of the two electrodes which are in contact with the water are coated with a nickel alloy.

The coaxial electrode system is specifically designed in materials and geometry to energize the water molecule to the end that it might be electrolysed. The center electrode is a hollow tube and also serves as a conductor of water to the Component III cell. The center tubular electrode is coated with a nickel alloy, and surrounded with a porous vitreous ceramic and a glass tube with the exception of the tip that faces the second electrode. The outer cylindrical electrode is made of a heat conducting steel alloy with fins on the outside, and coated on the inside with a nickel alloy. The center electrode, and the cylindrical electrode are electrically connected by an arching dome extension of the outer electrode which brings the two electrodes at one point to a critical gap distance which is determined by the known quenching distance for hydrogen. See FIG. 2 for an illustration of Component II.

COMPONENT III. The Water Cell

The water cell is a part of the upper end of Component II, and has been described. An enlarged schematic illustration of the cell is presented in FIG. 3. The Component III consists of the water and glass tubes contained in the geometrical form of the walls of cell in Component II, the thermodynamic device. The elements of a practical device for the practice of the invention will include:
(A) Water reservoir; and salt reservoir; and/or salt
(B) Water injection system with microprocessor or other controls which sense and regulate (in accordance with the parameters set forth hereinafter):
a. carrier frequency
b. current
c. voltage
d. RC relaxation time constant of water in the cell
e. nuclear magnetic relaxation constant of water
f. temperature of hydrogen combustion
g. carrier wave form
h. RPM of an internal combustion engine (if used)
i. ignition control system
j. temperature of region to be heated;
(C) An electrical ignition system to ignite the evolved hydrogen gas fuel.

The important aspects of Component III are the tubular vitreous material, the geometry of the containing walls of the cell, and the geometrical forms of the water molecules that are contained in the cell. A further important aspect of the invention is the manipulation of the tetrahedral geometry of the water molecule by the novel methods and means which will be more fully described in the succeeding sections of this specification.

The different parts of a molecule are bound together by electrons. One of the electron configurations which can exist is the covalent bond which is achieved by the sharing of electrons. A molecule of hydrogen gas, H_{2} is the smallest representative unit of covalent bonding, as can be seen in FIG. 4. The molecule of hydrogen gas is formed by the overlap and pairing of 1s orbital electrons. A new molecular orbit is formed in which the shared electron pair orbits both nuclei as shown in FIG. 4. The attraction of the nuclei for the shared electrons holds the atoms together in a covalent bond.

Covalent bonds have direction. The electronic orbitals of an uncombined atom can change shape and direction when that atom becomes part of a molecule. In a molecule in which two or more covalent bonds are present the molecular geometry is dictated by the bond angles about the central atom. The outermost lone pair (nonbonding) electrons profoundly affect the molecular geometry.

The geometry of water illustrates this concept. In the ground state, oxygen has the outer shell configuration

$$
1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{1}
$$

In water the 1 s electrons from two hydrogens bond with the $2 p_{y}$ and $2 p_{z}$ electrons of oxygen. Since p orbitals lie at right angles to each other (see FIG. 4A), a bond angle of 90° might be expected. However, the bond angle is found experimentally to be approximately 104°. Theoretically this is explained by the effect of lone pair electrons on hybridized orbitals.

Combined or hybrid orbitals are formed when the excitement of 2s electrons results in their promotion from the ground state to a state energetically equivalent to the $2 p$ orbitals. The new hybrids are termed sp^{3} from the combination of one s and three p orbitals (See FIG. 4B). Hybrid sp^{3} orbitals are directed in space from the center of a regular tetrahedron toward the four corners. If the orbitals are equivalent the bond angle will be $109^{\circ} 28^{\prime}$ (See Fig. 15) consistent with the geometry of a tetrahedron. In the case of water two of the orbitals are occupied by non-bonding electrons (See FIG. 4C). There is greater repulsion of these lone pair electrons which orbit only one nucleus, compared to the repulsion of electrons in bonding orbitals which orbit two nuclei. This tends to increase the angle between non-bonding orbitals so that it is greater than 109°, which pushes the bonding orbitals together, reducing the bond angle to 104°. In the case of ammonia, NH_{3} where there is only one lone pair, the repulsion is not so great and the bond angle is 107°. Carbon forms typical tetrahedral forms and components the simplest being the gas methane, CH_{4} (See FIGS. 4C and 8). The repulsion of lone pair electrons affects charge distribution and contributes to the polarity of a covalent bond. (See FIG. 16)

As demonstrated in succeeding sections of this patent specification, a significant and novel aspect of this invention is the manipulation, by electronic methods and means, of the energy level of the water molecule, and the transformation of the water molecule into, and out of, the geometrical form of the tetrahedron. This is made possible only by certain subtle dynamic interactions among the Components I, II, and III of the present invention.

Section 2 --- Electrodynamics (Pure Water)~
The electrodynamics of Components I, II, and III described individually and in interaction during the progress of purewater reaction rate in time. The reactions of saline water will be described in Section 3. It is to be noted that the output of Component I automatically follows the seven stages (hereinafter Stages A-F) of the reaction rate by varying its parameters of resonant carrier frequency, wave form, current voltage and impedance. All the seven states of the reaction herein described are not necessary for the practical operation of the system, but are included in order to explicate the dynamics and novel aspects of the invention. The seven stages are applicable only to the electrolysis of pure water.

STAGE A

Dry Charging of Component II by Component I \sim
To make the new system operational, the Component I output electrodes are connected to component II, but no water is placed in the cell of Component III. When Component I output is across the load of Component II we observe the following electrical parameters are observed:

Range of current (I) output with (dry) load:
0 to 25 mA (milliamperes) rms.
Range of voltage (E) output with (dry) load:
0 to 250 Volts (AC) rms.
There is no distortion of the amplitude modulated (AM), or of the sine wave carrier whose center frequency, $\mathrm{f}_{\mathrm{c}}{ }^{\prime}$

Ranges between $59,748 \mathrm{~Hz}$ to $66,221 \mathrm{~Hz}$
with f_{c} average $=62,985 \mathrm{~Hz}$
The carrier frequency varies with the power output in that f_{c} goes down with an increase in amperes (current). The AM wave form is shown in FIG. 5. It is to be noted here that the electrical function generator, Component I, has an automatic amplitude modulation volume control which cycles the degree of AM from 0% to 100%, and then down from 100% to 0%.congruent. every 3.0 seconds. This cycle rate of 3.0 seconds corresponds to the nuclear spin relaxation time, tau/sec, of the
water in Component III. The meaning of this effect will be discussed in greater detail in a later section.

In summary, the principal effects to be noted during Stage A -dry charging of Component II are as follows:
a. Tests the integrity of Component I circuitry.
b. Tests the integrity of the coaxial electrodes, and the vitreous ceramic materials of Component II and Component III.
c. Electrostatic cleaning of electrode and ceramic surfaces.

STAGE B

Initial operation of Component I, Component II, and with Component III containing pure water. There is no significant electrolysis of water during Stage B. However, in Stage B the sine wave output of Component I is shaped to a rippled square wave by the changing RC constant of the water as it is treated;

There is an `Open Circuit` reversible threshold effect that occurs in Component III due to water polarization effects that lead to half wave rectification and the appearance of positive unipolar pulses; and

There are electrode polarization effects in Component II which are a prelude to true electrolysis of water as evidenced by oxygen and hydrogen gas bubble formation.

Appearance of Rippled Square Waves ~
Phase 1: At the end of the Stage A dry charging, the output of Component I is lowered to a typical value of:
$\mathrm{I}=1 \mathrm{~mA} . \mathrm{E}=24 \mathrm{VAC} . \mathrm{f}_{\mathrm{c}}$. congruent $.66,234 \mathrm{~Hz}$.
Phase 2: Then water is added to the Component III water cell drop by drop until the top of the center electrode, 1', in FIG. 3 is covered, and when this water just makes contact with the inner surface of the top outer electrode at 2^{\prime}. As this coupling of the two electrodes by water happens, the following series of events occur:

Phase 3: The f_{c} drops from $66,234 \mathrm{~Hz}$, to a range from 1272 Hz to 1848 Hz . The current and voltage both drop, and begin to pulse in entrainment with the water nuclear spin relaxation constant, tau $=3.0 \mathrm{sec}$. The presence of the nuclear spin relaxation oscillation is proven by a characteristic hysteresis loop on the $\mathrm{X}-\mathrm{Y}$ axes of an oscillscope.
$\mathrm{I}=0$ to 0.2 mA surging at .tau. cycle
$\mathrm{E}=4.3$ to 4.8 VAC surging at .tau. cycle

The sine wave carrier converts to a rippled square wave pulse which reflects the RC time constant of water, and it is observed that the square wave contains higher order harmonics. See FIG. 6:

With the appearance of the rippled square wave, the threshold of hydrolysis may be detected (just barely) as a vapor precipitation on a cover glass slip placed over the Component III cell and viewed under a low power microscope.

The `Open Circuit` Reversible Threshold Effect ~

Phase 4: A secondary effect of the change in the RC constant of water on the wave form shows up as a full half wave rectification of the carrier wave indicating a high level of polarization of the water molecule in tetrahedral form at the outer electrode.

With the already noted appearance of the rippled square wave, and the signs of faint vapor precipitation which indicate the earliest stage of electrolysis, it is possible to test for the presence of a reversible hydrolysis threshold. This test is carried out by creating an open circuit between Components I and II, i.e., no current flows. This is done by lowering the water level between the two electrodes in the region --- 1' and 2 ' shown in FIG. 3; or by interrupting the circuit between Component I and II, while the Component I signal generator is on and oscillating.

Immediately, with the creation of an `open circuit` condition, the following effects occur:
(a) The carrier frequency, f_{c}, shifts from Phase 4 valve 1272 Hz to 1848 Hz to 6128 Hz.
(b) The current and voltage drop to zero on the meters which record I and E, but the oscilloscope continues to show the presence of the peak-to-peak (p-p) voltage, and the waveform shows a remarkable effect. The rippled square wave has disappeared, and in its place there appear unipolar (positive) pulses as follows in FIG. 6A.

The unipolar pulse frequency stabilizes to ca. 5000 Hz . The unipolar pulses undergo a 0 to 1.3 volt pulsing amplitude modulation with .tau. at 3.0 seconds.

Thus, there exists a pure open circuit reversible threshold for water electrolysis in which the water molecules are capacitor charging and discharging at their characteristic low frequency RC time constant of 0.0002 seconds. It is to be noted that pure water has a very high dielectric constant which makes such an effect possible. The pulsing amplitude modulation of the voltage is determined by the Hydrogen Nuclear Spin Relaxation constant, where .tau..congruent.3.0 seconds. It is to be noted that the positive pulse spikes are followed by a negative after-potential. These pulse wave forms are identical to the classic nerve action potential spikes found in the nervous system of all living species that have a nervous system. The fact that these unipolar pulses were observed arising in water under the conditions of reversible threshold hydrolysis has a profound significance. These findings illuminate and confirm the Warren McCulloch Theory of water "crystal" dynamics as being the foundation of neural dynamics; and the converse theory of Linus

Pauling which holds that water clathrate formation is the mechanism of neural anesthesia.

Phase 5: The effects associated with reversible threshold electrolysis are noted only in passim since they reflect events which are occurring on the electrode surfaces of Component II, the Thermodynamic Device.

A principal effect that occurs in Stage B, Phase 3, in Component II, the thermodynamic device, is that the two electrodes undergo stages of polarization. It has been observed in extensive experiments with different kinds of fluids in the cell of Component II , i.e., distilled water, sea water, tap water, Ringers solution, dilute suspensions of animal and human blood cells, that the inner surface of the outer ring electrode at 3 ' in FIG. 3 (the electrode that is in contact with the fluid) becomes negatively charged. Referring to FIG. 7, this corresponds to the left hand columnar area marked, Electrode .crclbar..

Electrode Polarization Effects at the Interface Between Components II and III ~
Concurrently with the driver pulsing of Component I at the .tau. constant cycle which leads to electrode polarization effects in Component II, there is an action on Component III which energizes and entrains the water molecule to a higher energy level which shifts the bond angle from 104° to the tetrahedral form with angle $109^{\circ} 28^{\prime}$ as shown in FIGS. 8 and 15. This electronic pumping action is most important, and represents a significant part of the novel method of this invention for several reasons. First, the shift to the tetrahedral form of water increases the structural stability of the water molecule, thereby making it more susceptible to breakage at the correct resonant frequency, or frequencies. Second, increasing the polarization of the water molecule makes the lone pair electrons, S- connected with the oxygen molecule more electronegative; and the weakly positive hydrogen atoms, S+ more positive. See FIG. 9 and FIG. 22.

As the outer electrode becomes more electronegative, the center electrode concomitantly becomes more electropositive as will be shown. As the polarity of the water molecule tetrahedron increases, a repulsive force occurs between the two S+ apices of the water tetrahedron and the negatively charged electrode surface within the region of the Helmholtz layer, as shown in FIG. 7. This effect "orients" the water molecule in the field, and is the well-known "orientation factor" of electrochemistry which serves to catalyse the rate of oxygen dissociation from the water molecule, and thereby causes the reaction rate to proceed at the lowest energy levels. See FIG. 10 for an example of how the orientation factor works.

Near the end of Stage B, the conditions are established for the beginning of the next stage, the stage of high efficiency electrolysis of water.

STAGE C

Generation of the complex wave form frequencies from Component I to match the complex wave form resonant frequencies of the energized and highly polarized water molecule in tetrahedral form with angles, $109^{\circ} 28^{\prime}$ are carried out in Stage C.

In the operation of the invention active bubble electrolysis of water is initiated following Stage B, phase 3 by setting (automatically) the output of Component I to:
$\mathrm{I}=1 \mathrm{~mA} ., \mathrm{E}=22 \mathrm{VAC}-\mathrm{rms}$,
causing the rippled square wave pulses to disappear with the appearance of a rippled sawtooth wave. The basic frequency of the carrier now becomes, $\mathrm{f}_{\mathrm{c}}=3980 \mathrm{~Hz}$.

The wave form now automatically shifts to a form found to be the prime characteristic necessary for optimum efficiency in the electrolysis of water and illustrated in FIG. 11. In the wave form of FIG. 11, the fundamental carrier frequency, $\mathrm{f}_{\mathrm{c}}=3980 \mathrm{~Hz}$., and a harmonic modulation of the carrier is as follows:

1st Order Harmonic Modulation $(\mathrm{OHM})=7960 \mathrm{~Hz}$.
2nd Order Harmonic Modulation $(\mathrm{II}$ OHM) $=15,920 \mathrm{~Hz}$.
3rd Order Harmonic Modulation (III OHM) $=31,840 \mathrm{~Hz}$.
4th Order Harmonic Modulation (IV OHM) $=63,690 \mathrm{~Hz}$.
What is believed to be happening in this IV OHM effect is that each of the four apices of the tetrahedron water molecule is resonant to one of the four harmonics observed. It is believed that the combination of negative repulsive forces at the outer electrode with the resonant frequencies just described work together to shatter the water molecule into its component hydrogen and oxygen atoms (as gases). This deduction is based on the following observations of the process through a low power microscope. The hydrogen bubbles were seen to originate at the electrode rim, 4', of FIG. 3. The bubbles then moved in a very orderly `pearl chain` formation centripetally (like the spokes of a wheel) toward the center electrode, 1' of FIG. 3. FIG. 12 shows a top view of this effect.

Thereafter, upon lowering the output of Component I, the threshold for electrolysis of water as evidenced by vapor deposition of water droplets on a glass cover plate over the cell of Component III, is:

$$
\left.\begin{array}{l}
I=\mathrm{mA} . \\
E=10 \mathrm{volts}
\end{array}\right\}=10 \mathrm{~mm}
$$

with all other conditions and waveforms as described under Stage C, supra. Occasionally, this threshold can be lowered to:

$$
\left.\begin{array}{c}
t-\mathrm{mA} . \\
E=2.6 \text { volts }
\end{array}\right)=2.6 \mathrm{mw} .
$$

This Stage C vapor hydrolysis threshold effect cannot be directly observed as taking place in the fluid because no bubbles are formed --- only invisible gas molecules which become visible when they strike a glass plate and combine into water molecules and form droplets which appear as vapor.

STAGE D

Production of hydrogen and oxygen gas at an efficient rate of water electrolysis is slowed in Stage D when a barrier potential is formed, which barrier blocks electrolysis, irrespective of the amount of power applied to Components II and III.

A typical experiment will illustrate the problems of barrier potential formation. Components I, II, and III are set to operate with the following parameters:

$$
\left.\begin{array}{l}
I=1 \mathrm{mLA} . \\
E=11.2 \text { volts }
\end{array}\right\} \begin{aligned}
& =11.2 \mathrm{mw}(\mathrm{al} \text { the starl) } \\
& \text { (rising to } 100 \mathrm{mw} \text {) }
\end{aligned}
$$

This input to Component III yields, by electrolysis of water, approximately $0.1 \mathrm{~cm}^{3}$ of hydrogen gas per minute at one atmosphere and $289^{\circ} \mathrm{K}$. It is observed that as a function of time the f_{c} crept up from 2978 Hz to 6474 Hz over 27 minutes. The current and the voltage also rose with time. At the 27th minute a barrier effect blocked the electrolysis of water, and one can best appreciate the cycle of events by reference to FIG. 13.

STAGE E

The Anatomy of the Barrier Effect
Region A: Shows active and efficient hydrolysis
Region B: The barrier region effect can be initiated with taps of the finger, or it can spontaneously occur as a function of time.

Phase a: The current rose from 1 mA to 30 mA . The voltage fell from 22 volts to 2.5 V.

Phase b: If component II is tapped mechanically during Phase a supra --- it can be reversed as follows: The current dropped from 30 Ma to 10 Ma . The voltage shot up from 5 volts to over 250 volts (off scale).

Throughout Phase a and Phase b, all hydrolysis has ceased. It was observed under the microscope that the inner surface of the outer electrode was thickly covered with hydrogen gas bubbles. It was reasoned that the hydrogen gas bubbles had become trapped in the electrostricted layer, because the water molecule tetrahedrons had flipped so that the $\mathrm{S}+$ hydrogen apices had entered the Helmholtz layer and were absorbed to the electronegative charge of the electrode. This left the S- lone pair apices facing the electrostricted layer. This process bound the newly forming H.sup.+ ions which blocked the reaction
$\mathrm{H}^{+}+\mathrm{H}^{+}+2 \mathrm{e}==>\mathrm{H}_{2}$ (gas)
STAGE F

Region C: It was found that the barrier effect could be unblocked by some relatively simple procedures:
(a) Reversing the output electrodes from Component I to Component II, and/or:
(b) Mechanically tapping the Component III cell at a frequency $\mathrm{T} / 2=1.5$ seconds per tap.

These effects are shown in FIG. 12 and induce the drop in barrier potential from:
$\left.\begin{array}{l}E=/ 250 \text { volts to } 4 \text { volts } \\ I=10 \mathrm{~mA} \text { to } \mathrm{I} \mathrm{mA}\end{array}\right\}=4 \mathrm{~mm}$ (final state)
Upon unblocking of the barrier effect, electrolysis of water resumed with renewed bubble formation of hydrogen gas.

The barrier potential problem has been solved for practical application by lowering the high dielectric constant of pure water, by adding salts ($\mathrm{NaCl}, \mathrm{KOH}$, etc.) to the pure water thereby increasing its conductivity characteristics. For optimum efficiency the salt concentration need not exceed that of sea water (0.9% salinity) in Section 3, "Thermodynamics of the Invention", it is to be understood that all water solutions described are not "pure" water as in Section B, but refer only to salinized water.

Section 3 --- The Thermodynamics of the Invention (Saline Water) ~
Introduction (water, hereinafter refers to salinized water) ~
The thermodynamic considerations in the normal operations of Components I, II, and III in producing hydrogen as fuel, and oxygen as oxidant during the electrolysis of water, and the combustion of the hydrogen fuel to do work in various heat engines is discussed in this section.

In chemical reactions the participating atoms form new bonds resulting in compounds with different electronic configurations. Chemical reactions which release energy are said to be exergonic and result in products whose chemical bonds have a lower energy content than the reactants. The energy released most frequently appears as heat. Energy, like matter, can neither be created nor destroyed according to conservation law. The energy released in a chemical reaction plus the lower energy state of the products is equal to the original energy content of the reactants. The burning of hydrogen occurs rather violently to produce water as follows:
$2 \mathrm{H}_{2}+\mathrm{O}_{2}===>2 \mathrm{H}_{2} \mathrm{O}$ - .DELTA.H $68.315 \mathrm{Kcal} / \mathrm{mol}$ (this is the enthalpy, or heat of combustion at constant pressure)
$(18 \mathrm{gms})=1 \mathrm{~mol})$
The chemical bonds of the water molecules have a lower energy content than the hydrogen and oxygen gases which serve at the reactants. Low energy molecules are
characterized by their ability. High energy molecules are inherently unstable. These relations are summarized in the two graphs of FIG. 14. It is to be noted that FIG. 14 (b) shows the endergonic reaction aspect of the invention when water is decomposed by electrolysis into hydrogen and oxygen. FIG. 14 (a) shows the reaction when the hydrogen and oxygen gases combine, liberate energy, and re-form into water. Note that there is a difference in the potential energy of the two reactions. FIG. 14 (c) shows that there are two components to this potential energy. The net energy released, or the energy that yields net work is labelled in the diagram as Net Energy released, and is more properly called the free energy change denoted by the Gibbs function, -.DELTA.G. The energy which must be supplied for a reaction to achieve (burning) spontaneity is called the activation energy. The sum of the two is the total energy released. A first thermodynamic subtlety of the thermodynamic device of the invention is noted in Angus McDougall's Fuel Cells, Energy Alternative Series, The MacMillan Press Ltd., London, 1976, page 15 it is stated:
"The Gibbs function is defined in terms of the enthalpy H , and the entropy S of the system:
$\mathrm{G}=\mathrm{H}-\mathrm{T} \mathrm{S}$ (where .tau. is the thermodynamic temperature)
A particularly important result is that for an electrochemical cell working reversibly at constant temperature and pressure, the electrical work done is the net work and hence,
.DELTA.G $=-\mathrm{w}_{\mathrm{e}}$
For this to be a reversible process, it is necessary for the cell to be on `open circuit', that is, no current flows and the potential difference across the electrodes is the EMF, E. Thus,

.DELTA.G = -zFE

(where F is the Faraday constant --- the product of the Avogadro Constant $+\mathrm{N}_{\mathrm{A}}=$ $6.022045 \times 10^{23} \mathrm{~mole}^{-1}$, and the charge on the electron, $\mathrm{e}=1.602189 \times 10^{-19} \mathrm{C}--$ both in SI units; and z is the number of electrons transported.) when the cell reaction proceeds from left to right."

It is to be noted that the activation energy is directly related to the controlling reaction rate process, and thus is related to the Gibbs free energy changes.

The other thermodynamic subtlety is described by S. S. Penner in his work: Penner, S. S. and L. Icerman, Energy, Vol, II, Non-Nuclear Energy Technologies. AddisonWesley Publishing Company, Inc. Revised Edition, 1977. Reading, Mass. Page 140 ff.
"It should be possible to improve the efficiency achieved in practical electrolysis to about 100% because, under optimal operating conditions, the theoretically-attainable energy conversion by electrolysis is about 120% of the electrical energy input. The physical basis for this last statement will now be considered.
"A useful definition for energy efficiency in electrolysis is the following: the energy efficiency is the ratio of the energy released from the electrolysis products formed (when they are subsequently used) to the energy required to effect electrolysis. The energy released by the process
$\mathrm{H}_{2}($ gas $)+(1 / 2) \mathrm{O}_{2}($ gas $)===>\mathrm{H}_{2} \mathrm{O}$ (liquid)
under standard conditions (standard conditions in this example are: (1) atmospheric pressure $=760 \mathrm{~mm} \mathrm{Hg}$ and (2) temperature $=298.16^{\circ} \mathrm{K} .=25^{\circ} \mathrm{C} .=77^{\circ} \mathrm{F}$.) is 68.315 Kcal and is numerically equal to the enthalph change (.DELTA.H) for the indicated process. On the other hand, the minimum energy (or useful work input) required at constant temperature and pressure for electrolysis equals the Gibbs free energy change (.DELTA.G). There is a basic relation derivable from the first and second laws of thermodynamics for isothermal changes, which shows that

.DELTA.G = .DELTA.H - T.DELTA.S

where .DELTA.S represents the entropy change for the chemical reaction. The Gibbs free energy change (.DELTA.G) is also related to the voltage (E) required to implement electrolysis by Faraday's equation, viz.
$\mathrm{E}=($. DELTA.G/23.06n) volts
where .DELTA.G is in $\mathrm{Kcal} / \mathrm{mol}$ and n is the number of electrons (or equivalents) per mol of water electrolyzed and has the numerical value 2 .
"At atmospheric pressure and $300^{\circ} \mathrm{K}$. ,. DELTA.H $=68.315 \mathrm{Kcal} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$ (i) and .DELTA.G $=56.62 \mathrm{Kcal} /$ mole of $\mathrm{H}_{2} \mathrm{O}$ (i) for the electrolysis of liquid water. Hence, the energy efficiency of electrolysis at $300^{\circ} \mathrm{K}$. is about 120%."

$$
\frac{\Delta G}{\Delta \vec{f}}=120 \%
$$

"(When) H_{2} (gas) and O_{2} (gas) are generated by electrolysis, the electrolysis cell must absorb heat from the surroundings, in order to remain at constant temperature. It is this ability to produce gaseous electrolysis products with heat absorption from the surroundings that is ultimately responsible for energy-conversion efficiencies during electrolysis greater than unity."

Using the criteria of these two authorities, it is possible to make a rough calculation of the efficiency of the present invention.

Section 4 --- Thermodynamic Efficiency of the Invention~
Efficiency is deduced on the grounds of scientific accounting principles which are based on accurate measurements of total energy input to a system (debit), and accurate measurements of total energy (or work) obtained out of the system (credit). In principle, this is followed by drawing up a balance sheet of energy debits and credits, and expressing them as an efficiency ration, eta..

$$
\eta=\frac{\text { Crodit }}{\text { Debit }}=\frac{\text { Encrgy Out }}{\text { Energy In }}=<1
$$

The energy output of Component I is an alternating current looking into a highly non-linear load, i.e., the water solution. This alternating current generator (Component I) is so designed that at peak load it is in resonance (Components I, II, III), and the vector diagrams show that the capacitive reactance, and the inductive reactance are almost exactly 180° out of phase, so that the net power output is reactive, and the dissipative power is very small. This design insures minimum power losses across the entire output system. In the experiments which are now to be described the entire emphasis was placed on achieving the maximum gas yield (credit) in exchange for the minimum applied energy (debit).

The most precise way to measure the applied energy to Components II and III is to measure the Power, P , in Watts, W. This was done by precision measurements of the volts across Component II as root mean square (rms) volts; and the current flowing in the system as rms amperes. Precisely calibrated instruments were used to take these two measurements. A typical set of experiments (using water in the form of 0.9% saline solution $=0.1540$ molar concentration) to obtain high efficiency hydrolysis gave the following results:
rms Current $=\mathrm{I}=25 \mathrm{~mA}$ to $38 \mathrm{~mA}(0.025 \mathrm{~A}$ to 0.038 A$)$
rms Volts $=\mathrm{E}=4$ Volts to 2.6 Volts
The resultant ratio between current and voltage is dependent on many factors, such as the gap distance between the center and ring electrodes, dielectric properties of the water, conductivity properties of the water, equilibrium states, isothermal conditions, materials used, and even the presence of clathrates. The above current and voltage values reflect the net effect of various combinations of such parameters. The product of rms current, and rms volts is a measure of the power, P in watts:
$\mathrm{P}=\mathrm{I} \times \mathrm{E}=25 \mathrm{~mA}$. times .4 .0 volts $=100 \mathrm{~mW}(0.1 \mathrm{~W})$
$\mathrm{P}=\mathrm{I} \times \mathrm{E}=38 \mathrm{~mA} \cdot \mathrm{times} .2 .6$ volts $=98.8 \mathrm{~mW}(0.0988 \mathrm{~W})$
At these power levels (with load), the resonant frequency of the system is 600 Hz $(.+-.5 \mathrm{~Hz})$ as measured on a precision frequency counter. The wave form was monitored for harmonic content on an oscilloscope, and the nuclear magnetic relaxation cycle was monitored on an $\mathrm{X}-\mathrm{Y}$ plotting oscilloscope in order to maintain the proper hysteresis loop figure. All experiments were run so that the power in Watts, applied through Components I, II, and III ranged between 98.8 mW to 100 mW .

Since, by the International System of Units --- 1971 (SI), One-Watt-second (Ws) is exactly equal to One Joule (J), the measurements of efficiency used these two yardsticks ($1 \mathrm{Ws}=1 \mathrm{~J}$) for the debit side of the measurement.

The energy output of the system is, of course, the two gases, hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(1 / 2 \mathrm{O}_{2}\right)$, and this credit side was measured in two laboratories, on two kinds
of calibrated instruments, namely, a Gas Chromatography Machine, and, a Mass Spectrometer Machine.

The volume of gases, H_{2} and $(1 / 2) \mathrm{O}_{2}$, was measured as produced under standard conditions of temperature and pressure in unit time, i.e., in cubic centimeters per minute (cc/min), as well as the possibly contaminating gases, such as air oxygen, nitrogen and argon; carbon monoxide, carbon dioxide, water vapor, etc.

The electrical, and gas, measurements were reduced to the common denominator of Joules of energy so that the efficiency accounting could all be handled in common units. The averaged results from many experiments follow. The Standard Error between different samples, machines, and locations is .+-. 10%, and only the mean was used for all the following calculations.

Section 5 --- Endergonic Decomposition of Liquid Water ~

Thermodynamic efficiency for the endergonic decomposition of liquid water (salinized) to gases under standard atmosphere (754 to $750 \mathrm{~m} . \mathrm{m} . \mathrm{Hg}$), and standard isothermal conditions @ $25^{\circ} \mathrm{C} .=77^{\circ} \mathrm{F} .=298.16^{\circ} \mathrm{K}$., according to the following reaction:
$\mathrm{H}_{2} \mathrm{O}(1)===>\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})+$. DELTA.G $56.620 \mathrm{KCal} / \mathrm{mole}$
As already described, .DELTA.G is the Gibbs function (FIG. 14b). A conversion of Kcal to the common units, Joules, by the formula, One Calorie $=4.1868$ Joules was made.
.DELTA. $\mathrm{G}=56.620 \mathrm{Kcal} \mathrm{x} 4.1868 \mathrm{~J}=236,954 \mathrm{~J} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}(1)$ where, 1 mole is 18 gms.
.DELTA.G = the free energy required to yield an equivalent amount of energy from H.sub. 2 O in the form of the gases, H_{2} and $(1 / 2) \mathrm{O}_{2}$.

To simplify the calculations, the energy required to produce 1.0 cc of $\mathrm{H}_{2} \mathrm{O}$ as the gases, H_{2} and (1/2) O_{2} was determined. There are (under standard conditions) 22,400 $\mathrm{cc}=\mathrm{V}$, of gas in one mole of $\mathrm{H}_{2} \mathrm{O}$. Therefore,

$$
\frac{\mathrm{AG}}{\mathrm{~V}}=\frac{236,954 \mathrm{~J}}{22,460 \mathrm{cc}} 10.5782 \mathrm{~J} / \mathrm{cc}
$$

The electrical energy required to liberate 1.0 cc of the $\mathrm{H}_{2} \mathrm{O}$ gases (where $\mathrm{H}_{2}=0.666$ parts, and $(1 / 2) \mathrm{O}_{2}=0.333$ parts, by volume) from liquid water is then determined. Since $\mathrm{P}=1 \mathrm{Ws}=1$ Joule, and $\mathrm{V}=1.0 \mathrm{cc}$ of gas $=10.5783$ Joules, then,

```
FN .. IJ < 10.5783 J ... 10.57B3 J
    = 10.5783 Ws
```

Since the experiments were run at $100 \mathrm{~mW}(0.1 \mathrm{~W})$ applied to the water sample in Component II, III, for 30 minutes, the ideal (100% efficient) gas production at this total applied power level was calculated.

0.1 Ws x $60 \mathrm{sec} \times 30 \mathrm{~min}=180.00$ Joules (for 30 min)

The total gas production at Ideal 100% efficiency is,
$180.00 \mathrm{~J} / 10.5783 \mathrm{~J} / \mathrm{cc}=17.01 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The amount of hydrogen present in the $17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{g})$ was then calculated.

$$
17.01 \mathrm{cc}_{2} \mathrm{O}(\mathrm{gas}) \times 0.666 \mathrm{H}_{2}(\mathrm{~g})=11.329 \mathrm{cc} \mathrm{H}_{2}(\mathrm{~g})
$$

$17.01 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \times 0.333(1 / 2) \mathrm{O}_{2}(\mathrm{~g})=5.681 \mathrm{cc}(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
Against this ideal standard of efficiency of expected gas production, the actual amount of gas produced was measured under: (1) standard conditions as defined above (2) 0.1 Ws power applied over 30 minutes. In the experiments, the mean amount of H_{2} and $(1 / 2) \mathrm{O}_{2}$ produced, as measured on precision calibrated GC , and MS machines in two different laboratories, where the S.E. is $+-10 \%$, was,

```
Measured Mean = 10.80 cc H2 (g)
Measured Mean = 5.40 cc (1/2) O O2(g)
Total Mean = 16.20 cc H2O(g)
```

The ratio, .eta., between the ideal yield, and measured yield,

$$
\pi-\frac{\text { Measured } \mathrm{H}_{2}(\mathrm{~g})}{\text { ldeal } \mathrm{H}_{2}(\mathrm{~g})}=\frac{10.80 \mathrm{oc}}{11.33 \mathrm{cec}}=91.30 \%
$$

Section 6 --- Energy Release ~

The total energy release (as heat, or electricity) from an exergonic reaction of the gases, H_{2} and O_{2}, is given by,

$$
\mathrm{H}_{2}(\mathrm{~g})+(\mathrm{b}) \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{P})-\Delta \mathrm{H} 69.315 \mathrm{Kcal} / \mathrm{mol}=
$$

(--AH 286,021 Joules)/mol

It is possible (Penner, Op. Cit., p. 128) to get a total heat release, or total conversion to electricity in a fuel cell, in the above reaction when the reactants are initially near room temperature ($298.16^{\circ} \mathrm{K}$.), and the reactant product $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is finally returned to room temperature. With this authoritative opinion in mind, it is desirable to determine the amount of energy released (ideal) from the exergonic experiment. The total energy of 1.0 cc of $\mathrm{H}_{2} \mathrm{O}(1)$, as above is:

$$
1: 0 \mathrm{co} \Delta \mathrm{H}=\frac{286.021 \mathrm{~J} / \mathrm{mol}}{22.400 \mathrm{cc} / \mathrm{mol}}=12.7687 \mathrm{~J} / \mathrm{ce} \mathrm{H} \mathrm{H}_{2} \mathrm{O}(1)
$$

for $\mathrm{H}_{2}=12.7687 \times 0.666=8.509 \mathrm{~J} / 0.66 \mathrm{cc} \mathrm{H}_{2}$ for $\mathrm{O}_{2}=12.7687 \times 0.333=4.259$ $\mathrm{J} / 0.33 \mathrm{cc}(1 / 2) \mathrm{O}_{2}$

The energy produced from the gases produced in the experiments in an exergonic reaction was,
$16.20 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \times 12.7687 \mathrm{~J} / \mathrm{cc} \mathrm{H}_{2} \mathrm{O}=206,8544 \mathrm{~J}$.
The overall energy transaction can be written as,

$$
\begin{array}{r}
\frac{\text { EXERGONIC }}{\text { ENDERGONIC }}-\eta-\frac{-\Delta H}{+\Delta G}-\frac{206,854.4 \mathrm{I}}{180,000 \mathrm{~J}}= \\
1.14919 \ldots 114.92 \%
\end{array}
$$

In practical bookkeeping terms the balance of debits and credits, $\mathrm{n}=(-$. DELTA.H) (+.DELTA.G), so, $\mathrm{n}=206.8544 \mathrm{~J}-180.0=+26.8544 \mathrm{~J}$ (surplus).

Since, in the invention, the gas is produced where and when needed, there is no additional cost accounting for liquifaction, storage, or transportation of the hydrogen fuel, and the oxygen oxidant. Therefore, the practical efficiency, is
$\pi P=\frac{26.8544 \mathrm{~J}}{180.0090 \mathrm{~J}}=$
14.919% (as net return on the original energy investment)

In practical applications, the energy output (exergonic) of the Component II System can be parsed between the electrical energy required to power the Component I System, as an isothermal closed loop; while the surplus of approximately 15% can be shunted to an engine (heat, electrical, battery, etc.) that has a work load. Although this energy cost accounting represents an ideal model, it is believed that there is enough return (app. 15\%) on the capital energy investment to yield a net energy profit that can be used to do useful work.

Conclusion ~

From the foregoing disclosure it will be appreciated that the achievement of efficient water splitting through the application of complex electrical waveforms to energized water molecules, i.e. tetrahedral molecules having bonding angles of $109^{\circ} 28^{\prime}$, in the special apparatus described and illustrated, will provide ample and economical production of hydrogen gas and oxygen gas from readily available sources of water. It is to be understood, that the specific forms of the invention disclosed and discussed herein are intended to be representative and by way of illustrative example only, since various changes may be made therein without departing from the clear and specific teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the method and apparatus of the present invention.

Top ~ Home
rexresearch.com

InFour

REX RESEARCH P O BOX 19250 JEAN
NV 89019
USA

```
Jovitschitsch
J4-JOV Milorad: TRANSMUTATION OF CARBON TO OXYGEN -- Ethylene \& acetylene were reacted with phosphorus or copper oxide, condensed and analyzed. Elemental carbon had been transformed to Oxygen! The experiment was repeated with various reagents and similar results. Here are 2 papers -- IN GERMAN -- reporting the remarkable simple experimental details.. This process has enormous implications for industry, agriculture, geochemistry, etc..
```


CO_{2}
 Der rätselhafte Mangel an Kohlenstoff bei den Kondensationsprodukten von Äthylen und Acetylen

von
Milorad Z. Jovitschitsch.

Aus dem Laboratorium der Bergbau-Akademic in Belgrad.

(Vorgelegt in der Sitzung 2m 10. Oktober 1907.)

Der zu wiederholtem Male bedeutend geringer gefundene Kohlenstoffgehalt bei diesen Produkten drängte mich, hierüber Aufklärung zu erhalten. Vor allem beobachtete ich die größte Sorgfalt bei der Darstellung. Das Äthylen sowohl als auch das Acetylen wurden vollkommen trocken in den Synthetisator eingeführt, dessen Inhalt kaum über 50 bis $60 \mathrm{~cm}^{3}$ betrug. Das kondensierte Äthyten wurde auf Schwefelgehalt geprüft, das kondensierte Acetylen auf Phosphor, beidemal mit negativen Erfolge.

Dann schritt ich mit allen $z u$ Gebote stehenden Vorsichtsmittein zur Verbrennung. Die Verbrennungen wurden zuerst mit Kupferoxyd ausgeführt, indem die Substanzen innig mit diesem zusammengemischt waren; das Kupferoxyd ist vonKahlbaum bezogen. Dann führte ich die Verbrennung im Sauerstoffstrom und schlieflich mit Bleichromat aus, welches ebenfalls von Kahlbaum herrührte. in allen diesen Fälen waren die Resultate dieselben.

Hier die Grenzwerte jener zwei Analysen des kondensierten Äthylens, zwischen denen die Werte aller anderen Wasserstoff- und Kohlenstoffzahlen einer und derselben Portion variierten: ${ }^{1}$

[^0]Chemie-Heft Xr. 1.
dam hembinch zugemachten Getione direht entnommen wurde，ist diese Summe

 ＂arimger wen 100．

 äußerlich．Ob Berthelot zu jener Angabe durch eventuell auch bei wochenlangem Stehen an der Luft nicht im geringsten gehalte kaum etwas．Kondensiertes Acetylen aber ändert sich zwar dickflüssiger，verliert dabei aber von seinem Kohlenstoff－ denken．Kondensiertes \AA thylen wird beim Stehen an der Luft tionsprodukte begierig Sauerstoff aufnehmen，ist gar nicht zu finden．An die Berthelot＇sche Angabe，daB diese Kondensa－
 geführt wurde，bekam man nie mehr Kohlenstoff． die Verbrennung unter welchen Bedingungen immer aus： yo os ool sן лalu！ un 1a！̣ is！ゅolsjasse M pun jozsurpyoy uon awuns o！
 Gewicht nicht zugenommen hat．Einige Milligramm Wasser nimmt sie

A4． 1.1498 g Substanz ergaten $0.0919 \mathrm{~g} \mathrm{H}_{\mathrm{o}} \mathrm{O}$ und 0.3905 g CO g oder

 stellung mit Alkohol ausgekocht，sodann im Exsikkator getrocknet． 6.950 H und $71.96 \% \mathrm{C}$ ．Dic Substanz wurde direkt nach der Dar

 （ Jivilnchitsim，

年

 zuejsqns dop 14p!nar Gewicht des Alkohols. gefurnden.
 แว!
 so gut wie unlislich, dagegen das aus Athylen in Äther und erhaltene, beim Erhitzen stark zu verpuffende Produkt ist aber

dunkler elektrischer Entladung ausgesetzt.

 Stom ant das trockene Athylen, dargestellt aus Alkohol und

 war sun der Stärke 2 Ampère und 12 Volt

$$
=0
$$

$$
\begin{gathered}
\vdots \\
\vdots \\
\vdots
\end{gathered}
$$

知

$\overbrace{\text { บวрungo }}$

$$
\begin{aligned}
& 60 .: \\
& 89.99 \\
& \hline
\end{aligned}
$$

C.......... $56 \cdot 68$
schließlich mit Alkohol ausgewaschen, fast unslöslich wasser, gefärbten Körper, welcher, mehrere

 nuszuführen ist, fült sich mit einer smam besten die Reaktion mäßigen kann. Das Glasrohr, in welchemines vom Wasserbade
 dem Wasserbade aut 00 bis 60° tit. Erst durch Erwärmenauf schwimmendenbraunöligen Fluie von der an deren Oberfläche ein; es trennt sich nur die Säure von deine weitere Veränderung Auch beim langeren Stehen tuilt erhaltenen ähnlicher Körperein dem bei der Bromeinwirkung erhaltenen ähnticher Käteht wenn man diese zu Anilin oder Benzol hinzufügt Esaun, wie Dafür spricht auch das Verhalten der konzentrierten
Salpetcrsäure gegenüber. Von dieser wird es sofort braun, wie ниес schließen. der Kohlenstoffatome im Molekul des Kondensationsproduktes

 aus $0 \cdot 3$ bis $10 \cdot 35$.s angewandter Substanz einige Mitligrame

 Frodulit.

 fочоя誛 ग!u uaqjoy u!ag

 sationsproduktes, die mit 5 bis $6 \mathrm{~cm}^{3}$. Aus $0 \cdot 53 \mathrm{~g}$ des Kondenwird er hart, von rötlichem Aussewicht getrocknet wird. Dabei Exsikkator bis zum konstanten Gewicht getrocknet wird und im deärbten Kör Masse zu einem plastischen, voluminösen, gelb äBufüh kann. Das Glasrolur, in welchem am besten die Reaktion hwimnenden braunöligen Flussigkeit. Erst durch Erwä lache
A. Z. Jovitschitsch,

 Die Formel $\mathrm{C}_{30} \mathrm{H}_{2}$, B_{1} : fortert 3 , 230_{0}°.

 Wird das in wenig Xther oder Alkohol suspendierte 4(i) 30.4

 ..

 Ant Io : efiin: wird, und mit Brom direkt versetat so trilt Whatz:c P:Mtuki wit thohol auswizsht worin aur an-

 \because-bintung entstehen kann.
 nothe:... :- sonderes Gewicht. da doch aus einer reinen Kohlen-

 hinterbleibt sie mit dunklerer Farbe, doch mit denselben :ris.

$4.85 \% \mathrm{~N}$.
II. 0.1278 g Substanz ergaben $5 \cdot 6$ Volumen N bei 740 mm und $t=2 \because 0$, wre

 feiner Niederschlag.

 Mecherglas noch eine Zeit lang auf, so 'scheidet sich durch

 athaltendes Becherglas taucht, tritt die Reaktion bald ein. Nach
 (Hamo u! uorsaq ut 'apeqasse.

 : :
 nitlose. h.s.u: bum konstanten (iewicht getrocknet, gelangte er zur
 'ISO!

 \therefore indenon Kohic abfiltrierte saure Flüssigkeit, ohne weiteres matischer Verbindungen erimnerte. ${ }^{1}$ Die von der atge
daf das Rohr ergluhte und von reichlichen Mengen eines
Rauches erfüll wurde, dessen Geruch deutlich an don ch 0.7 verarbeiten wollte, war die Einwirkung so stürmisch,
 !!

 heobachtet habe, wird sie aber in gepulvertem Zustande selbst чว! ว!М әпnẹs

 Mustersubstanderivate ähneln äußerlich im allgemeinen der

Nonstitution sprechen weiteren Bromatomen statfindet, so kïnnte das für folgende zwei Bromatomen sowie auch die Substitution von nur zwei

G, $1 I_{0}, \mathrm{Br}$.

 lans ethitクl wourde, beobachtete ich beim Öffnen des Rohres

Aus diesen Zahlen berechnet sich die Formel $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{30}$, welche für $\mathrm{C}=39.69 \%$, für $\mathrm{H}=2.75 \%$ und für $\mathrm{N}=4.63 \%$ fordert.

Auffailend ist der so hohe Sauerstoffgehalt und der sehr geringe Kohlenstoffgehalt.

Nachdem ich auch bei der. Muttersubstanz, dem kondensierten Acetylen, sowie auch bei dessen Bromderivaten, Di- und Tetrabromid, ebenfalls ein Manko an Kohlenstoff beobachtet habe, glaube ich nicht, daß analytische Fehler vortiegen, sondern daß diese Differenzen auf einer bisher nicht beobachteten Tatsache beruhen. Über diese äußere ich mich in der folgenden Mitteilung.

NEW AGE SCIENCE JOURNAL June 1976

World Federation Of Science And Engineering

MAGNA CULTURE

This issue is dedicated to agriculture in hopes that the combined information will be of help to the farmers of the future, of which we feel will be everyone.

With the increase in our population throughout the world and a decrease in the farming, it will become necessary for approximatly 40% of the people to grow their own vegetables, that is if they want to survive.

From the beginning of time on earth, man has had the privilage of working with plants and the discription of the first so called garden that was placed here came with the instructions of how to keep it in good shape and let it produce 100% for the benefit of mankind.

Yes, we are talking about the GARDEN OF EDEN. All of the exposed surface of the earth was covered with plants and the Eden that it existed in was the atmosphere; the air, moisture, and frequency that these plants grew into and in the middle of all of this was a special kind of tree that was different than the rest of the plants, and it was called the TREE OF THE KNOWLEDGE OF LIFE. Why was it called this and why was it different?

We feel that it was a system that helped disperse the many thousands of micro frequencies that are in motion throughout the atmosphere, thus giving each plant a close relation with the count of frequency it needed. This is referred to as the R.F. count in most professions that are working along these lines today. It is a known fact today that each plant has its own R.F. factor, even though they might yeild the same kind of fruit they have a different count. This we refer to as each plant with its own knowledge.

Let us review some of the facts that have been recorded for the past 70 or so years from the research in this direction.

RADIOFREQUENCY CATALYST FOR INSECT CONTROL

One of the greatest boons to our society would be insect control by nonchemical or semichemicalmethods lacking polluting side effects. It is episodic pollution that captures public attention. The recent deaths of thousands of sheep in the vicinity of a military testing ground are an example. However, within the context of the problem, perhaps more important are long-range cumulative effects produced by chlorinated organic pesticides such as aldrin, DDT, dieldrin, methoxychlor, and others. The dangerous philosophy prevails that if one cannot see, feel, smell, or taste a pollutant, it does not exist. Nuclear hazards, for example, were frequently overlooked until obvious cases of radiation sickness were reported. Here it took inventors to provide advanced instrumentation that replaced the old spinthariscope in this critical field.

Fossil records indicate that insects are the oldest inhabitants on earth. Ninty percent of all animals are insects. Silk, cochineal, honey, and lac are insect products. A few hundred of the 500 , 000 species known are harmful. Selective insect control in agriculture and peripheral fields is important to effective plant growth and yeild. Although the intrinsic nature of insects is not fully understood, it appears that electronics could emerge as a controlling agent.

Insects are susceptible to ultrasonic waves and electromagnetic fields. If dense energy trains are directed at a specimen, internal heating effects tend to occur, and the animal might boil and explode. However, if gains are evaluated against costs, the fact emerges that the use of electronic methods alone is too expensive for practical applications.

By contrast, chemicals are cheap. This invites us to consider combinations of low-cost electronics with inexpensive chemicals, possibly in a catalytic sense. Enzymes, for example, act as catalysts in water, since many life sustaining compounds react only in solutions. Thus, electronic pulse trains might be directed at insect populations that have eaten catalyst-type chemicals responsive to relatively weak eletromagnetic stimulation. Here, the
catalyst would give rise to abnormal endergonic states resulting in death. A normal endergonic event is the combination of carbon dioxide and water to form sugar within a living system.

A basic approach is shown in Fig: 1-1. The end-ergonic-type organic catalyst is applied to crops in the form of a spray. Aften the catalyst is taken up by insects 12 or more hours later, radiofrequency energy triggers it into action inside the body of the insect. Lethality will result from metabolistic anomalies in populations thus radiated. The ideal spray would function as a catalyst only in small animal life forms. It would have no effect on plants per se, nor would it be harmful if not irradiated by R.F.

The following references provide a basic introdution:
A. Hollaender, ed., Radiation Biology, Vols. I, II, III, (New York; McGraw-Hill Book Company, 1956).
G. G. Simpson, Life: An Introduction to Biology (New York: Harcourt, Brace and Co., 1957).

Fig. 1-1.
Radio-frequency catalyst for insect suppression.

PLANT ELECTROCULTURE

In conjunction with environmental pollution attention is directed to the nitrate pollution of agricultural fertilizers. New nethods, preferable electrical, are desired to stimulate plant growth and yeild.

Historically, attempts to increase the growth of plants date back to the 18 th century. Dr. Mambray of Edinburgh, Scotland, apparently was the first to conduct experiments in 1746 . Major experiments were conducted by Dr. S. Lemstroem in Finland in 1903. Exellent results were obtained.

Dr. Lemstroem, a professor of physics at Helsingfors, came to the belief that very rapid growth of vegetation in polar regions during the short arctic summer was to be ascribed to special electrical conditions of the atmosphere in these high latitudes. He duplicated these assumed conditions by increasing the atmospheric current, which normally passes from the air to the plant, by the use of atenna-type wires placed above the crop. An electrostatic Wimshurst machine was used for his purpose. Results were given in Dr. Lemstroem's book, Electricity and Agriculture and Horticulture, (London, 1904).

Lemstroem's work and results gave rise to experiments on an international scale, as is reflected in the following literature:
F. Basty, Nouvaux Essais d'Electroculture (Paris:
C. Amat, 1910).
V. H. Blackman, et al, "The Effect of an Electric Current of Very Low Intensity on the Rate of Growth of the Coleoptile of Barley," Proc. Roy. Soc. B., 95, 214-28, 1923.
K. Stern, Elektrophysiologie der Pflanzen (Hei-delberg-Berlin: J. Springer, 1924).

The various methods are known under the combining term "electroculture," Fig. 1-2 shows a typical electroculture system. The DC exciting voltages are determined by the height of the feeding antenna, but

Fig. 1-2 Electroculture System.
usually are between 2000 and 70,000 volts. The following observations have been made:

1. The true percentage of yield increase for a good field is 45 percent maximum.
2. The better a field has been plowed, the greater is the yield obtained through electroculture. If the soil is too lean, no pronounced increase in yield can be observed.
3. Some plants do not respond to treatment unless watered. If they are watered, the yield can be extremely high. Peas, carrots, and cabbage are typical.
4. Electroculture treatment is detrimental to many, probably all, plants if conducted on warm, sunny days.
5. Overhead antenna wires should be arranged high enough to permit convenient plowing.

In the vicinity of the plant, current densities radiated by overhead discharge systems range approximately from $10-12 \mathrm{~A} / \mathrm{cm} 2$. Natural electrical current densities peak out between $10-16$ to $10-15 \mathrm{~A} / \mathrm{cm} 2$. A1though these current densities might appear to be extremely low, note that electroculture provides current that are about 1000 to 10,000 times higher than those given by nature. Electrometers may be used in the field to establish proper current levels. Higher drive voltages are needed to compensate for increased antenna height.

The domain of electroculture is wide open for new inventions because experiments are not complete. Specific needs for improvements reside in the area of in-field high-voltage generation and application.

It is of interest to realize that plant electroculture, in spite of its excellent promise, was relegated to dormancy by the advent of inexpensive nitrate fertilizers. Here we have a typical case in which a once-fabulous invention in chemistry commenced to dig its own grave (and perhaps ours, too!)

PSYCHOGALVANIC EFFECTS IN LIVING PLANTS

Although living plants normally are not regarded as more than edibles or raw material for construction purposes, new inventions and experiments are needed to determine their sentient properties.

Early in 1966, polygraph expert Cleve Backster of New York created the background for an entirely new science by accidental discovery. Employing the same kind of polygraph (lie detector) that is used to test emotional stimulation in human subjects, Backster found that plant specimens register fear, apprehension, pleasure, and relief. Futher, by using simple electronic methods, it was found that plants react not only to overt threats to their state of well-being, but even more stunningly, to the intentions and feelings of other living creatures, animal as well as human, with which they are closely associated.

It could be shown, for example, that simple house plants, such as the Dracaena Massangeana or philodendron, register apprehension when a dog goes past them, react violently when live shrimp are dumped into boiling water and apparently receive signals from dying cells in the drying bolld of an accidentally cut finger. Plants even appear to respond to distress signals over a considerable distance.

The immense importance of what is now referred to as the "Backster effect" need not be underlined. The phenomenon offers entirely new possibilities to inventors and research scientists, typically in areas of communications heretofore closed to us.

The overall aspects of the "Backster effect" were profiled in the following publications:
C. Backster, "Evidence of a Primary Perception in Plant life," International Journal of Parapsychology, Vol. 10:4, Winter 1968, pp. 329-48.

Anon., "ESP: More Science, Less Mysticism," Medical World News, Vol. 10:12, March 21, 1969, pp. 2021.
L. G. Lawrence, "Electronics and Parapsychology," Electronics World, April 1970, pp. 27-29.
L. G. Lawrence, "Electronics and the Lining Plant," Electronic World, October 1969, pp. 25-28

The effect continues to be verified both here and abroad. Its action cannot be blocked by Faraday screens, screen cages, lead-lined containers, or other shielding structures positioned between the plant and external test objects. Therefore, the phenomenon cannot be added to the inventory of electromagnetic domains established by classical physics.

How does the effect come about? Unfortunately, there are no concise answers at this time. The field is too new. However, the effect has a psychogalvanic character and can be varified by instrumentation batteries. A typical test system is composed of a variable Wheatstone bridge, a dc amplifier, a Faraday cage for the plant specimen, and graphic recorder for collecting data in a permanent manner.

In operation, the cage-contained plant is connected by a simple, leaf-attached clamp electrode to the Wheatstone bridge, and the readout system is energized. Then, by mentally projecting physical harm against the plant, response curves may be elicited. However, if the treat is not followed up by physical action (like burning, for example), the plant tends to adjust to these "idle threats" and ceases to respond. Response profiles are not uniform, changing from one specimen to the next. No responses and/or delayed reactions occur in many cases, all of which are imperfectly understood.

As a guide to inventors, the following equipment systems, approaches, and scientific considerations are offered as practical aids:

1. To avoid industrial and domestic electrical interference, electronics-oriented experiments with plants should be conducted in shielded enclosures such as metallic greenhouses. If, however, such a structure is too costly, an inexpensive wooden design may be used. Here, interference can be attenuated by attaching metallic screen wire to the walls, bottom, and ceiling of the greenhouse. Note that light must be permi-
thed to enter, since it is vital to photosynthesis. If a given Faraday-type enclosure is totally opaque, artificial illumination must be provided. If lamps of the fluorescent type are imployed, light must enter through a meshed metal screen securely grounded to a water pipe. For information on lamps designed explicitly for living plants, contact:

Commercial Engineering Department Lighting Division
Sylvania Electric Products Inc.
Salem, Massachusetts
Request bulletins 0-262 ('Gro-Lux" fluorescent lamp), 0-285 and 0-286. The visible light spectrum required by plants for successful chlorophyll synthesis is between 4000 and 4800 angstroms, effective values peaking out at about 4500 angstroms.
2. For field operation involving testing of plants, psychogalvanic equipment must be housed in rugged, shielded containers. This requirement is especially stringent in those cases in which susceptibility tests are performed adjacent to power lines, populated areas, or automotive service stations generating voltage transients. Electrically, plants may be regarded as organic semiconductors and, regardless of size, have orthodox antenna functions.
3. For dependable experimental results, new virgin plants may be used. Fresh cultures may be started conveiniently from packaged growth kits such as "Punch "n Grow" provided by Northrup, King \& Co., Minneapolis, Minnesota. The kit contains seeds and soil material in a plastic container. Its cover may be punched with a blunt tool, and water may be added for seed activation.
4. In conjunction with item 3, seeds may be stimulated and raised into the seedling stage under the influence of weak radiofrequency fields. Apparatus for this purpose should operate below a wavelength of 10 meters. For information on RF stimulation of seeds, perusal of the following reports is suggested.

P. A. Ark, "Application of High-Frequ-

 ency Electrostatic Fields in Agriculture, " Quarterly Review of Biology 1940, 15:172-191.
(A) Basic method.
(B) Yield patterns.

Fig. 1-3.
Stimulation of seeds by RF methods.

In the high-power stimulation phase, RF energy is applied for fractions of a second. According to the scheme shown in Fig. 1-3, seeds are contained in a plastic sack or bowl and placed between application plates connected to the RF generator tank circuit. This process is most critical and should not be attempted without background studies.

Fig. 1-4
Composite RF stimulator for seeds and seedlings.
In the low-power stimulation phase, RF currents in the micro-ampere or milli-ampere range are applied to a planted seed specimen. Apparatus is shown in Fig. 1-4. The blower-cooled RF generator to the left feeds energy into an interval switch at the bottom of the quasi-Faraday cage. A nutrient feeder for seedlings, seen at the upper right of the illustration, furnishes weak auxin-type solutions or other growth hormones.

Because of its radio-frequency character, equipment of this type must always be operated within an electromagnetically shielded facility such as those outlined in item 1.

As an experimental adjunct to $R F$ methods, seeds also can be stimulated successfully by ultrasonic processes. A research paper on the ultrasonic treatment of corn seeds is available from:
U. S. Department of Agriculture

Washington, D.C. 20250

A piezoelectric-type ultrasonic generator is shown in Fig. 1-5. Operating at frequency of 165 kHz , the instrument requires no rectifier and drives the crystal at a power of 17 watts.

In the ultrasonic mode, seeds to be treated are placed in a sieve-type metal container and placed in a water bath agitated by ultrasonic waves. Frequencies up to 900 kHz have been used. According to reports, ultrasonics

(B) Schematic.

Courtesy L\&R Manufacturing Co
Fig. 1-5.
"Minisonic" ultrasonic system.
are yeild-stimulating; i.e., seeds treated by this method germinate better than controls and render more produce. However, within the context of the current problem, the method is suggested primarily in order to grow virgin plants fast for experimental purposes. As in the case of RF methods, no information is available on the RF or ultrasonically stimulated plant properties differ in the expression of psychogalvanic phenomena in connection with the "Backster Effect."

Fig. 1-6.
Basic acoustical plant response detector.
5. To commercialize an invention in this area, given equipment should be small and functional. Being a "discovery tool" for others (including students, engineers, gardeners, hobbyists, etc.), new psychogalvanic cirsuitry should be developed to display plant reactions with the least possible expense.

Fig. 1-6 shows one approach. A currentcontrolled oscillator (Fig. 1-6A) forces a weak excitation current through a plant leaf via a clamp electrode (Fig. l-6B). Variations in the conductance properties of the plant, which may be regarded as an organic semiconductor, will "steer" currentsensitive oscillator stage Q1. Thus, overall action is similar to that of Fig. 1-6C a Wheatstone-type detector principle.

Arranged on a tripod, the plant response detector might feature an elevated clamp electrode mounted on an extension inserted into the instrument proper. Thus, plant structures can be reached and observed as desired. During operation it is imperative that the electrode fixture does not move. Movements or bending of leaves inserted into the clamp electrode produce undesirable strain-gauge effects and impair the quality of psychogalvanic data.

In conjunction with this and related equipment, the inventor should realize that plant reactions, if any, cannot be predicted in advance. Fire (injury by acts of burning) is the most powerful stimulant a plant can experience. It was the mental projection of this very threat that led Mr. Backster to the discovery of the effect named after him. By contrast, the act of cutting can bring somewhat delayed reactions. Electrical plant behavior triggered by direct application of force produces well-known responses, typically as investigated in a specimen like the Mimosa Pudica. Data and directions for experiments may be found in the following reference:
J. Bures, et al, Electrophysiological Methods in Biological Research (New York: Academic Press Inc,. 1967).

The function of organic semiconductors, if considered alone, is discussed in good depth in:
F. Gutmann, Organic Semiconductors (New York: John Wiley \& Sons, Inc. 1963).

The behavior of living systems exposed to stimulus and excitation is given in the book: G. Ungar, Excitation (Springfield, Ill.: Charles C. Thomas, Publisher, 1963).

An excellent description of electron transport systems in plants has been given by Walter D. Donner, Jr. of the University of Pennsylvania. His contribution may be found in:
W. A. Jensen and L. G. Kavaljian (ed), Plant Biology Today: Advances and Chal-
lenges (2nd ed., Belmont, Calif.: Wadsworth Publishing Company, Inc., 1967).

All things considered, the psychogalvanic effect in plants is one of the very best vehicles for dramatic new discoveries and instumants available to inventors today. The effects of these phenomena on science and industry no doubt will be considerable and of immense value to society at large. To that end, it is hoped that definitions of the various aspects involved point ways from which to start.

GROW IT YOURSELF

The enthusiasm for home gardening that sprang up in America three or four years ago amid fastrising food prices has taken firm root.

For the first time since World War II, more than half of all U.S. households, 51 percent, plan to have a vegetable garden in 1976. That's the finding of the Gallup Poll.

Again this spring, business is booming in seeds and fertilizer, with supplies of both reported plantiful. Tools, such as mechanical soil tilers, are readily available, sometimes at bargain prices.

All signs indicate, too, that there will be plenty of lids for canning jars this season. A survey by the Department of Agriculture finds that the industry expect to double its production in 1976.

FAVORITE VEGETABLES

In many parts of the country, tomatoes appear to be the most popular vegetable, followed by leaf lettuce and squash of all varieties.

William Foos, president of Ferry-Morse Seed Company in Mountain View, Calif., reports that early shipments of all kinds of seeds are up "a little over last year, when we had record sales."

At the Northrup King Company, in Minneapolis, Vice President Howard Schuler says inquiries about gardening are running 5 percent higher than last year. He estimated that home gardening will expand by about 2 percent this year.

A shift from days gone by is noted by Mr. Schuler, who says that those gardening now are not primarily the impoverished people trying to save money, but middle class suburbanites who want a hobby.
W. Stanley Stuart, Jr., vice president of Ball Corporation, at Muncie, Ind., estimates that there will be about 35 million home vegetable gardens during 1976, up from 32.5 million last year.

Moreover, Mr. Stuart says, about 41 percent of all American households will do some home canning in 1976, up from 37 percent a year ago.

To meet this expected increase, Ball officials have geared manufacturing operation to produce 65 percent more replacement caps and liks than were shipped out last year. The company's plants will continue to operate three shifts a day, seven days a week, as they have since January, 1975.

Supplies of gardening equipment are reported plentiful, with some at lower prices this year.
A. A. Malizia, president of McDonough Power Equipment, Inc. at McDonough, Ga. explains:
"There are plenty of soil tillers. The industry overproduced by 30 to 35 percent last year, so there are a good many carry-overs on the market. You can make some good buys.

FRESH DIRECTIONS

Among the latest trends in back-yard gardening cropping up this spring:

Built-up gardens are gaining advocates. Railroad ties or bricks are often used as a low wall to raise the soil level by a foot or two. Advantage: It's easier to work, the drainage is usually improved, and it easier to build the soil to the desired richness in such a confined area.

Drip irrigation, in which moisture is slowly metered out to plants by means of a drip hose system, is becoming more popular.

Soil testing is becoming a standard procedure for most new home gardens, often through county or State agricultural offices for a small fee of $\$ 3$ or so. However, says Huey Whitehurst of Texas A \& M's Dallas experimental station: "These are not really necessary, particularly after a couple of years, when you've gotten your soil built up with organic matter and fertilizer."

Moisture meters, used initially for indoor plants, are being installed in some outdoor gardens to measure the amount of moisture in the ground and indicate when watering is needed.

Container gardening is catching on with apartment dwellers. Instead of flowers, these gardeners are raising vegetables in hanging baskets, in containers on stairways, on trellises and in window boxes.

Gardening in a bucket is among the more original concepts: Milton Smith Burgess, Sr., a retired meat packer in Little Rock, Ark., last year planted 22 different vegetables in 90 containers, ranging from 5-gallon paint buckets to big garbage cons.

Mr. Burgess's technique is simple. He filled the buckets with leaves, threw in some lime and fertilizer, and topped it all off with about two inches of peat moss. "It's really easy," he explains. "All you have to do is add about a quart of water each evening and then just sit back and watch things grow. With peat moss, there are no weeds. Also, I don't have to spray for insects."

From 12 buckets of plants, he produced about 1,600 tomatoes last year. Another 16 buckets with five stalks of corn in each yielded enough to last all summer. His wife canned 50 quarts of cucumber pickles. This spring he is increasing his garden to 110 buckets.

The WORLD FEDERATION OF SCIENCE \& ENGINEERING has, as one of its major projects for the past two years, been doing quite an extensive bit of experimenting with what we have named MAGNA CULTURE.

The head of the project is Dr: Norman Kellogg and due to his dedication to the project we have had some very outstanding results from the various arrangements for plant environment, and we have proven to ourselves and to a few other interested parties, that each plant is a living creature with its own type of intelligence and that the greatest restriction to life is its inability to move around and seek out the type of suroundings that would help it have a better environment to exist in.

There are three things that are very important to all types of plants: First is nutrition, make sure the soil has all the normal nutrients that are needed. Second is moisture, now when you are watering your plants make sure that you do not over do it, or that you do not under do it, make frequent checks to see if the moisture is up to about an inch from the top of the seed bed, if it is dry deeper than one inch it should be watered.

The third is frequency, if a plant does not receive enough R.F. count from the ground and the atmosphere, (and it takes both), then it will not mature properly it will only yeild around 30% of its potential. That is why most farmers only expect about 30% to 40% of the potential of each plant, quite a waste, don't you agree.

Our research has proven that by putting Antennaes up at certain locations, we can enhance the enviornment enough to allow the plant maximum R.F. count to draw from thus giving us close to 100% yeild from all types of bearing plants.

Have you ever wondered why plants grow larger and faster along a wire fence. The fence is acting as an antenna. The fence will enhance the frequency up to four or five feet on each side of it and if you dig down below the surface of the soil on each side of the fence you will also find that the moisture count in the soil is greater for about the same distance. Yet about 15 or 20 feet from the fence
you will have to go down five or six times as deep to find the same kind of moisture.

Another observation that gives you some idea of what higher concentration of frequency can have on the hydro count is to set a car next to the metal poles that hold the high tension wires that run asross country, and park another car about two blocks away. When you come back in the morning the car under the high tension wires next to the pole will have moisture on the windows, which the one two blocks away will not.

This should give you some idea of what frequencies can do. The atmosphere is loaded with millions of frequencies and they are being used daily. The funny thing is, that we are totally unaware of how much traffic is going on all around us. Another thing that is amazing, is that we are only using about 2% of this traffic.

With MAGNA CULTURE, we can use a small amount of these frequencies, we do not need them all, as long as we can attract some of them it will give the plants a much stronger flow to draw from and since each plant is a knowledge in its own, it will only use what it needs.

Some of the drawings and pictures on the next few pages will give you some idea as to how you can get better results from your plants, of course, it does not mean that this is the total answer. If you can experiment with your own arrangements and get better results, please do so and let us know what your results are.

The MAGNA CULTURE antennae recharge the minerals in the soil used by the plants or trees, using the frequency of the EARTH'S ETHER FIELD.

PLANTS AND VEGETABLES

Prepare ground as for normal planting, fertilizing evenly.

Regular metal coat hangers may be used or any other type of metal wire. All paint or coating should be removed.

Reshape coac hangers for antennae, as above.

Insectisides should not be needed as much, as destructive insects do not like the frequency put out by the coils. Constructive insects, such as Bees and Earth Worms are not bothered. In fact, Earth Worms thrive under MAGNA CULTURE conditions, as our experiments have proven.

Always be careful not to allow the antenna wires.
to touch the leaves of the plants or burning could result.

FENCES

FENCES BECOME ANTENNA

Planter box may be any size convienent for area available. Trellises can be attached for climbing plants - Peas, beans, tomatoes, etc. They may also be used indoors with Grow Lights.

Coils should be cleaned twice yearly. To do this imerse in a pail of hot water in which $\frac{1}{2}$ box of soda has been disolved.

North of the Equator the coils should be COUNTER CLOCKWISE . South of the Equator CLOCKWISE .

We do not recommend that you use commercial fertilizers, they are loaded with artificial junk. Plants are living cells of their own and it is not natural from a common sense direction for us to feed our plants something that we know is unhealthy.

If you will look at the labels on any of your commercial artificial plant fertilizers you will see that they give you a danger precaution that it is dangerous to your health, but we don't seem to realize that even after we feed it to our plants and then we eat the fruit of that plant, that it may still be dangerous to our health.

Take these three items and run them through your mind. NITROGEN, PHOSPHORUS, and POTASSIUM. That is the main ingredients of artificial fertilizers, would you sit down to a table with a plate full of these so called 1 ife giving items?

For the past 30 to 40 years, our agriculture systems have grown to depend on the commercial fertilizers to the point that 98% of our farming is artificial. Now let us take some figures from another direction and see if we can still add $2+2$ and come up with 4 .

During this same period of time we find that there has been a tremendous increase in three of the most disabiliting diseases that are known to man. Number one is Heart Conditions, number two is Arthritis Conditions, and the third is the most baffling of all - CANCER. I am not a medical doctor, but I do feel that once medical research finds a way to counteract the effects of what the chemical reactions of these artificial poisons are to the human body, they just might come up with an antidote.

Through our research we have proven to our own satisfaction that by getting back to basics and using natural organic fertilizers we have much healthier plants and feel healthier ourselves.

There is more waste that comes out of the kitchens of most homes than it would take to farm half the land the country has. To name some of the items that could be reused: old breas, coffee or tea, vegetable waste, citrus peels, old shopping bags or newspapers, yes old newspapers, just shred it up and mix it into the soil with all the rest of the left overs.

With a good system of recycling your normal organic waste and using the MAGNA CULTURE system of enhancing the frequency count around your garden, you can get back on the right track to good health.

One of our Service Members just brought us a book that is an outstanding piece of research. We recomment you read it, not only is it a good book on plant life but it is very good on basically what life is all about. Read it:

Title: "THE SECRET LIFE of PLANTS". By: Peter Tompkins \& Christopher Bird.
Pub.: AVON.
Found in most Bookstores.
We also recommend, "ORGANIC GARDENING \& FARMING", a monthly magazine found usually at the local Newstands or Drugstores.

We have talked quite a bit about what the frequencies that we exist in can do for plants. So be prepared, because in our next issue we will cover what frequencies can do for the human body.

The next issue will be in September 1976. If this is the first issue of the NEW AGE SCIENCE JOURNAL that you have read, then you may be interested in the first, it was published in March 76.

The NEW AGE SCIENCE JOURNAL is a quarterly publication of the WORLD FEDERATION OF SCIENCE \& ENGINEERING, THE COST IS $\$ 3.00$ an issue or $\$ 9.00$ for a one year subscription.

We publich a Newsletter that goes to our Service Members each quarter in addition to the JOURNAL. There is no charge for the Newsletter. To become a Service Member there is a life fee of $\$ 2.00$.

WORLD FEDERATION OF
SCIENCE \& ENGINEERING
Dept. S. M.
5842 McFadden Suite "J"
Huntington Beach, Ca. 92649
T: 10.8.8093

NR. M23-MUE
TITLE:

MUELLER

Magnet Motor

M23-MUE MUELLER, WilheIm: Current \& background info about a controversial unipolar high-freq. motor-alternator (utilizing 165 NdFeB magnets \& 30 coils with FET heat sinks, linear ramp generator, encoder wheel, and impulse motor) that allegedly produces "free energy": 44 KW in one test in 1987.. However, others disclaim this, while otehr claim that the disclaimers are spreading intelligence-agency disinformation.. Decide for yourself, \& build one if necessary: here are several pages of engineering diagrams, plus a 1982 test redort that indicates only 28% efficiency for an
early prototype!?.. 30 pp..

Free Energy From Revolutio
 a competent engineer, noted that ant

The stories on these pages were authored by Tom Valentine, a Call. formia-based free-fance journaliss and frequent consributor to the SPOTLIGHT.

EXCUumin to the beotucht
"Move over, Joe Newman"there's a new star on the magnetic motor horizon.

Withelm Muller from Pendicton, British Columbia has constructed a prototype magnetic motor-generator that produces more efectricity than is required to run the equipment.

The underiying connceps. is ealled "over-unity" by Mutler.
While such a motor has long been called "impossible perpetual motion" by Establishment physicists, the use of new materials makes the equipment not only possible but cost effective.
Muller has theorized about over-unity for several years, but it wasn't until he oblained very powerful neodymium-iron-boron magnets-the most powerful permanent magnets yet manufactured for industiry-that he produced 1 machine capable of generating much more electricity than it takes to run the driveshaft motor.

Inventor Joe Newman of Mississippi has been involved in a protracted light against the U.S. Patent Office, which conlinues 10 deny tim a patent for a 2. Himilar machine. The basie difference beiwén Mutler's generator and New. man's enericy machine is that Newman's machine produces a great deal of radio frequency (RF) energy rather than praitical alternating or direct electrical current.

The RF energy must then be converted to usable electricity. and there are considerable losses of energy involved in the process, making Newman's device inefficient by comparison to Muller's.

PUMP ELECTRICITY

- Traditionally electric current is produced by "pumping' it out of amgnetic field. A coil or conductor wire is either passed through a magnetic field, or has a magnetic field passed by it, causing electricity to race out of the field and down the coil windinge and into wit. ing systems.
It is analogous to pumping water from a well. The more electricity one wants, the harder the pump must work.

Because work is required to pump efectricity out of the magnetic field, and because of heat losses due to resistance, it has been "impossible" to generate more electricity than the amoum of energy used to operate the pump.

Ever since Michael Faraday pumped the first electric current out of a mapnetic field 156 years ago, science has "known". that it will always lake more kinetic energy input than the amount of electricity output by any generator.

However, had Faraday. Thomas Edison or Nikoia Tesla, the greatest electrical geniuses in history, been able to work with some of today's materials, the eoncept of over-unity might have become part of tradition and magnets, rather than oil, might then have become the dominant energy source of the 201h century.

Mulier's concept is briliant in its

Side vie $=$ of the simple Muller motor-geverator (heft photo). The recond rotary device is an old prototype made with oider materiain, which was displayed lor contrant. In the right photo, Ctintoa Milier of the National Health Federation (left), poodera the intertor of the Muliet devire while Muller, center bechground, checins tome figurea with an moidentifind engineer.
simplicity. First he ignored what the textbooks have to say about magnetism. The textbooks stress that magnets "do. no real work.

Muller and many others, such as Les Adam of AZ Industries, who manufac. tured the magnets for Multer's prototype, have proved over and over that magnets can do a tremendous amount of work

device detalls

Muller's device consists of 165 neo-dymium-iron-boron permanent magnets arranged on a flywhee! of "micarter," a non-maghetic plastic material. The taagnets are 2 by 2 by 0.5 Inches to stec and. protrude from boin sides of the 0 y. wheel.

The magnets produce a nux field of 4.700 oersteds per side, or a combined
rating of 9,400 ocrsleds. By comparison, the Earth's magnetic field is 0.7 oersleds, on average.
One problem is that moving such powerful magnets past iron coils would require a iremendous amount of power due to the attractive forces of the magnets.
Muller's conls are cored with a substance called "metglass," which aocepts eiectric current seadily without hysteresis losses, or heat losses caused by resislance to eiectricity
Even with the unique coils, the Bywheel does not spin easily, but it can be meved by hand despite the 16 potent magnets aligned to pass 30 coils- 15 coils mounted opposite the magnets on each side of the flywheel.

Initial tests in February, monitored by
electric motor using total of 4,400 watts of power drove the flywheel at 2,000 rpin.
HIGH OUTPUT
Each coil of the prototype is different. ly wound as part of Muller's ongoing research, so each coil's electrical output measured differently, The lowest coil output measured 784 watls per hour; the highest output was metered a! 1,776 watts per hour.
The variations in the coils alloued Muller to determine the optimum wind. ings required to build the machine to ruti itself once started. Conceivably with 3 (1) colls producing more than 1,700 watts (1.7 kilowats), it will take onty fout coils to drive the motor, leaving 26 times 1.7 kilowalts available for outpul energy-a "free' energy production of 44.2 kilowatts.

One machine could eastily provide alt the eleciricity requirements of eight three bedroom homes. in production, the Mulier generator should cost less than $\$ 1,000$.
"The magnetic field doesn't wear out over thousands of years." Adam noted, so the only maintenance would be on the bearings of the flywheel shath.
The generator is so economically reasible it poses a tremendous threat to the status 90 of the world's most powerful monopoly: the electric power monopoly.
Muller pians to demonstrate a working model tof the self-propelted-menotype at the "'Meeting of the Minds"" sponsored by "Magnets' magazine and AZ Industries this October B. 10 in Temecula. California.

Muller Wasn't Alone in Field

cxClunave to the sfothoint

While the Muller magnetie motor is perhaps the most promising of all the "over-unity" motor-generator concepts being circulated in the underground of alternative energy today, there are numerous others.
Joe Newman's energy device, which atso is clamed to use permanent magnels to generale more energy than required to run the equipment, has gained considerable fame because of the U.S. Patend Office relusal to grant him a patent.

For Those Who Say: 'Impossible'

Encubvitothe sonociry

The following, taken from the Encyclopaedia Britannica (1985), is for those who argue "perpetual motion -impossible'" when the subject of magnetic motors and "over-unity" comes up.

Under the subheading of "work required to move a magnetic pole" the noted reference says:

When a magneik pole to moved, work Wast be dome afalasi any force seting on It
if H in moved in the direction opposite the If his moved in the direstios opposite the
force, yed conversety, work will be done lor Cap be extracted) by the mitwetk pale when h moves is the forre direction.
fim, weot io dose in moring a mat.

The problem is not one of semantics, or patent protection or govertament inef-ficiency-the problem for all of the many such ideas coming forward for the past several decades, many with patents granted, is a probiem of powet-not electric power, but financial and political and economic monopoly power. Lent year the book "Power Struggle," by Richard Rudol! and Scott Ridley, was published by Hasper and Row. It has not received a great deal of media altention, but it tells the btory of the last 100 yeats of struggle between those who would monopolize electric power and
metr pok hround E sioned meto ha masGefic fietd. It foliows ingithe wort tome to moving the pote. . . Trom therat 1 io polint is indeperdeal of ine reste ford. retersed therwise libe polel conialw
 In the intionl moteractit to A.
the nel effect would be that mori cautd be eitracied by movement erannd the compiete palth without any other change in the system, giving she postibilty of a perpermal motion machuse ther is contrary to the laws of meshanici. IEmphesias moded.!
Withelm Mulier's invention has "no work required to move a pole from a pole"-in other words, the has the "nel eflect" mentioned by the encyclopedia.
those who must use it.
The nuclear power game-the mononoly's most lucrative scam in 100 years of electrical generation schemes-is the priority of the financial and economuc powermongers

Any over-unity invention that proves feasible and cosi effective would surely wreak havoc with the monopoly,
To get a glimpse of the kind of power talked about, here are a few paragraphs from 'Power Struggle'';
"Today the electric industry is a panchwork of contiguous monopolies. patchwotk of contiguous monopolies.
"It consists of 2,194 municipal and public utility district systems, which range in size from the city of los Angeles 10 the namiet of Readsboro, Vermont, 870 rural cooperatives strung throughout 46 states, Puerto Rico and throughout 46 states, Puerta Rico and
the Virgin Islands. 210 privale comthe Virgin Islands. 210 privale com-
panies that supply power in most major cities, and six federat agencies that provide power to public and private systems from federal dams.
"These power systems are sirung together by more than 600,000 miles of geverhead transmission lines and some 4 overhead transmission lines and some 4
million miles of distribution wires, carrying electricity from 10,499 power plants.
"Unlike most major industrialized nations, where eleclricity is provided as a service by public agencies, the private companies are the dominating force in

ary Super Magnet Invention

,f Inquiry

the United States; supplying 78 percent of the nation's electrictly and controlling the transmission grids, and influencing much of the government's power policies.
"Within the transmission grids, the small municipal and rural electric systems are overshadowed by the private companes and the federal power agen. cies are surtounded by them. State regulatory commissions, which were estiblished in an attempt to control the priyate companies in the early 1900 s , are kighlyitinhuenced by their political clout."

After more descriptian of the power companies'cioul, there is this telling entry :
"The biggest sectet is Wall Stroet's involvement in this empire. Producing and Iransmitting electricity is the most capital-intensive industry in the world, and the power companies have long been known as the dividend machines of Wall Street.
"The private power companies traditionally issue half of all the new common industrial stock every year and absorb a third of att corporate financing. As much as 40 percent of a consumer's bill goes to pay for financing charges. bill goes to pay for hnancing charges. Thus, a large number of major bankers
and brokers such as Chase Manhatian and brokers such as Chase Manhattan
and Merrill I ynch are affected by decisions concerning power companies.

WILHELM MULIEA
. . . Inventor iello his etory.
"Half of the income of major investment bankers is estimated to come from financing private power companies."

It Won't Be Monopolized

excluave to tal sembingt

Wilhelm Muller has been inserested in magnetism ever since he was a youth in Germany. However, he becarne obsessed with the potentia! power inherent in per manent mapnetism about 20 years ago when a ball bearing he had piaced in a moderately large flux field between two permanent magnets shot across a roont and through a wall.

As new and more powerful magnet materials were deveioped, beginning with the rare earth materials such as the samarium-cobalt gencration, Mulier experimented with ways to get more power out with less work involved.
Finally, after modest success in several areas (he holds numerous Canadian patents on thagnetic devices), Muller was able to construct generator unil with spectacular "over-unity" power output, in his words, thanks to the newest generation of magnet materials.
Neodymium is a lanthanide metal, in the same family as samarium. In 1983 both General Motors and Surnitomo Metals of Japan announced the discovery of a potent magnetic alloy of neodymium, iron and boron.

This new material has the potential of producing fields double the strength of the strongest samarium-cobalt fields.
"In the 183 ${ }^{3}$," Muller told The SPOTLIGHT in an exclusive interview, "Michael Faraday set the standards that we still go by :oday. But permanent magnets of up to 0,000 oersteds are now possible, and magnets of 20.000 oersteds are on the shelf.
"The attractive and repulsive forces of these new magnets open the door for changes in the potential of the unipolar motor generalors.
"Used in the old motor design, the static positioning becomes a force, which requires enormous torque to move. This is whete my system of using the best. suited new materials shows the advantage.
"By using an odd and even number of rotor-stator poles, and because of the special characteristics of these new materials, the magnetic attraction within the 360 degrees will balance magnetically to a zero torque on the rotor shaft.
"The rotor will move at the slightest impulse, and continut to move with no static positioning. The possibilities are mind boggling."
Muller provided The SPOTLJGHT with a set of drawings and has promised to do everything in his power to keep his research from being covered up or "monopolized" out of the. hands of the people.

- DETERMINATION OF EFFICIENCY OF CANADIAN AMPLIFIES MAGNETIC PROPULSION SYSTEM (CAMPS) GENERATOR

DETERMINATION CF EFFICIENCY OE
CANADIAN AMPLIFIED MAGNETIC PROPULSION
SYSTEMS (CAMPS GENERATOR
Dec. 22 Ma
Introduction
The purpose of these tests was to determine the efficiency of a generator invented and developed by Mr. Bill Muller and Mr. Mark Brander. It was hoped, by the inventors, the machine would have an efficiency greater than or equal to 100%, ard was claimed, with proper development, that it would. The tests were carried out by Mr. Jim hoover and Mr. Garret Scemar. on behalf of NOVA, AN AIBERTA CORPORITION at the residence of the inventors in Penticton, B.C. on November 29 and $30,1982$.

Description of Generator
The generator consists of an aluminum rotor with 15 poles spaced equally apart and a stator with loo poles also spaced equally apart. Rare-earth sciait permanent magnets are used for the stator poles. The stator poles and windings are encased in ar epoxy-type material. The generator is housed in an open aluminum frame.

For this series of tests, the generator was driven by a 3 HP Baldor single-phase motor.

NovA

Theory of Operation

As mentioned in the description, there are 16 equaliy spaced pairs of stator poles each of which has fiela windings and permanent cobalt megnets. The rotor has 15 equaliy spaced laminated iron paddies on the periphery. As the rotor turns, the rotor padiles progressively pass the pairs of statcr poles and change the magnetic field intensities. These changes in magnetio fiela intensities incuce volteges in the associated field wincings. The difference in rotor-stator pole numbers resuits in 50\% of the padile being attracted in the direction of rotation and 50 in the opposite direction. The ret consecuences are as follows:
(a) The 'ideal' hypothetical generator with no luad and no eday or hysteresis losses will require zero net torgue end zero horsepower to operate.
(b) If a load is apElied to tie poie windings, the resuiting currents will be such that magnetic attraction will be reduced when a paddle is approaching a pole set and increased when leaving a poie set. In this way mectarical work is transferrec proportionately to eiectrical work. This phenomenon obeys Faraday's law and Lerz's law of eiectromagnetic incuction.
(c) Losses in the form ofediv losses or hysteresis will afsect magnetic Eield strength in a similar fashion to that of (b). $t p / \mathrm{C}-11$ - 2 -

mest Procedure

The objective of the tests was to calculate the efficiency of the generator．To do Ehis，power out as well as fower into the generator had to be derived．

The motor and generatcr configuration used during the test is shown in the apperdix．Note due to faulty coils on the gererator stator，coils $\$ 8$ ard $\overline{\mathrm{c}} \mathrm{g}$ were paraileled．，A purely resistive heating element was used for icad across the generator coils． All coils in the sたetた上 are electricaily independent from ejoh other．Therefore，a corrinucus heatirg element could be used across all coils as shown，without affecting the inaividual coil measurements．

Voltage and current Eor each coil was measured．Since the load is purely resistive，power factor will be wity and power can be obtained by multiplyirg voltage and current．

Voltage and curren measuremerts were also taker or the ingut to the motor．The series resistor，across which V_{l} is taken，is a small resistor in the order of 1 ohm ，and is normaliy shorted out．However，when the input measuzemerts were being taken，the short circuit across thet resistor was removed．The reason for this is calculations can be performed using V_{T}, V_{1} and V_{2} to give an approximate verification of power Eactor．Power factor on the input to the motor is critical in the aralysis．

Measurements were taker. lising a TIF Digital pcwer probe cippon ammeter anc a Sanwa Vclt-Ohm meter. These rieasuremerts were verified using similar eguipment suppiied by the inventors. Frecuency was measured using a Data precision freguency Meter and waveform was observed using a Philips Dual-trace oscilloscope.

Complete sets c f measurements were $=$ aken for three differert loads as well as the open circuit ard short circuit conditiors. The motor was also disconnected from the generator and irput measurements taker while the motor was rumring free.

Sumary of Results

Because of a lack of confiderce in the input currert measurements, due to inaccuracies of the ammeter or cne particular rance, the power factor and efficiency curves versus load were obtained Erom the motor manufaceurer. The input currert on the no-10三d test was adjusted to correlate with the data given to us by the motor manuf三cturer. Ingut currerts for all the other tests were adjusted accordingly. The degree ce adjustments was confirmed by comparing the calculated power factors and the one supzlied by the motor menufacturer.

Raw data obtained is included in the appendix. A sumary ce the tests is as follows:

Waveform of the generator output was examined during Test $\$ 4$. The output was a sine wave with little distortion and a Ereguercy of 480 Hz .

$$
t p / d-11
$$

$$
-5-
$$

Based on the test results, the generator does not have an efficiency greater than 100 z and, indeed, does not approach 100 z. It is beiieved significant losses due to eddy currents ir the rotor anc stator anj overall frictional losses accourt for the low efficiency. It shouid be understood test concitions were less than icieal, however, it is Eelt this aralysis gives a fair estimate of the generetor's efficiency.

Recommendieticns

We believe a further reduction of the amount $c=$ metal in the machine and a increased use of laminations woula significantly reduce eddy and hysteresis losses. Frictional losses will be lowered by utilizing greater control during the machine construction stage in order to reduce tolerances.

It is our belief, with the proper development, this machine could be a relatively nigh efficiency gererator and be of a very simple construction. Note we do not believe efficiercy will ever be greater than or equal to 100%. The attractiveness of the machine is in its simpie construction. Because of its high frequency generation, it would probably be more useful if the output were rectified and employed as DC power. One application that comes to mind, because of the machire's simple construction, low starting torque and epparent independence on speed, is remote wind generation.

March 1, 1983

The disacturtage of an oprosing field called the Back E.M.F. can be elim inated by not moving a mactet past a coil or a coil past a mamet as is described in U.S. Patent \# Granted te John Eckin. The Eckiin Gesion however does not have a very substantial cutpu: as it is limited to a minimal amount of Rotor Poles and Stator Colls because of the static pressure of the pole pieces wanting to attract to their respective macnets. We have been able to eliminate this pressure by increasing te an odd number a plurality of Stator Magnets positioned around an even number of Rotor poles ard thus creatino a stagerment of Stator Magnets and neutralizing magnetic pressure so that the rotor may turn freely with minimal effort. mis is mentioned in caveat \# 32,351 issued September 15, 1982.

Minimal. hysterisis lesses in the Rotor Foles is achieved by utilizing the same polarity of ail Stator magnets, so thet a complete magnetic change from North to South Poles does not occur thus eliminating half of a normai hysterisis loop that would occur should the Stator Magnets be polarized in an alternating north and south Eashion.

The unicue design of the generator when constructed with electro magnets to the rear and beside each Statar Oitput Coil and connected in series with each other by means of bi-polar capacitors will also provide its own motive force. This ocours when the Stator Magness are grouped close enough to each other at the rotors edee so that when a Rotor Pole has caused current to Elow in an Exciting or Driving Coil on the rear of the Stator Magnet it can be transferred to the adjacent Driver Coil through a capacitor and thus causing a movement of the rotor. The rotor has to beinitially rotated and the Exciting Coils momentarily energized to permit internal motive force to begin. The rotor caninitially be brought to speed by utilizing Micro Processors and Micro Switches suitably programed to use the Output coils to act as motor windings and then turn them back into Oitput Coils. The Driver Coils can be momentarily energized by discharging an appropriate D. C. Capacitor into the Eiting Coils, by means of Diodes connected in series between all Drivers.

PLEASE NOTICE;

No recommendation was given by NOVA on the coil's size and number of turns.

Our generator has guess wound 200-250 turns of \#16 wire which is not an optimum coil. The best coil output was read at 15 volts, 10 amps which is 150 watt power. That means if we calculate the proper coil winding and size it should increase the output substantially. Wire size and coil turns and coil numbers and cores can produce any output desired.

We beleive that conventional generator coil windings that make a flux change through a $8,000 \mathrm{~B}$ (gauss) magnet, could be turns of any size wire on a one inch cobalt magnetic core that is the standard norm.

It would create the optimum amperage and voltage output if we adheared to the conventional generator coil's output!

No reference to Newton's Law was made on Kinetic Energy stored in a fly wheel rotor. (Mass in motion turds to stay in motion)

Page 2 of 8

GENERAL EXPlANATION

Permanent ardor electro magnetically imbalanced infinite laminated even iron segments around a rotor, stationary uneven magnets and coils.

SIMPLE GE MUITIEIE DOUBLE RETURNING HELIX

Magnetic elimination around a shaft is explained for all non reluctant motor generators which is achieved by employing an even number of rotor segments and an uneven number of stationary permanent and/cr electro magnets and coils. Therefore, magnetically eliminating all static and dynamic pressure or all reluctant motor generators, in a forward and returning helix properly spaced arcund, and/or along, shafts or spindles of cobalt, and/or electro magnets, and/or air bearings in a turbine rotary fashion.
odd and ever, indefinitely returning gives you a zero torque input, and this is achieved by linequalizing magnetic pressures, called magretio motor and magnetic gereratgr:
REFER TO:
Fischer Electronics 0 .., Engineering Report
Drawings one and mo
Encl., Letter, Resume, and Drawings

THE ROTOR EXPLAINED

The rotor has ever segments of fine lamination of brass and iron alternately and/or cher magnetic materials, would dampen the eddie currents and hysterisis. These segments are imbedded in a nonmagnetic or non-acnductive material.

The rotor car be in any direction indefinitely, along an axil, vertical or horizortai, or any combination thereof.

Rotor core material should be Edit in mess to the
material of stator coils in a returning helix.
The purpose of the rotor is to pump magnetic flux changes through coils.

Memetic Energy is stored in the fig wheel rotor assembly at any size. Ciroumfences responds proportionately to mass and speed. (Apply Newton's Laws of Physics) Motor force - no more torque input necessary.

THE GENERATOR COILS AND

HOW THEY ABE POSITIONED

Wire should be wound in the proper direction, turns and size equal tc coils of conventional generators around a core material of cobalt rare earth magnets charged to the amount of $8-10,000 \mathrm{~B}$ (gauss) or fici $16-18,000$ De, or of an electro magnetic nature at arr volume E (gauss).

Using an odd number of tic. coils, wound on magnetic cores, they are then placed around an even numbered iron and brass segmented rotor. In the parisphere of a rotor; gyroscopic, cyindrical, linear, eiptical, horizontal, vertical, spherical, cone shaped, diamond shaped, cr ringed and/or any combination thereof
$04 / 22 / 83$

REFER TO:
An Elementary Book on Electricity and Magnetism and Their Applications. Norwood Press / J.S. Cushing \& Co. - Berwick \& Smith / Norwood Mass., U.S.A.
The MacMilian Company; London: MacMillan \& Co., Ltd. / Copyright 1902
Page 139/1st Paragraph / Chapter 10 / Faraday's \& Ienz's Law

NOVA's Determination of Efficiency of Canadian Amplified
Magnetic Propulsion Systems (CAMFS) Generator.
Page 2 - Theory of operation / Paragraph E.
Ehysics Parts I \& II / Authors, David Hailiday \& Robert
Fesnick
John Wiley \& Sons, Enc. - New York - Iondor - Sydney / copyright 1960, 1962, 13E6.
Page 874 / Chapter 35 / Faraday's Law/ Bra Earagreph

PAGE_ \vdots of 8

Making a flux charge in ANY manner in a magnetic field, that is; not moving a magnet or a coil. We make our flux change by moving segmented iron or ferrite material, and set up corresponding magnetic field in a coil that is energized by a flux change, does not seem to explain the back E.M.F., when we are in the same direction with the output coins. As the permanent magnet which is stationary and when cur flux change comes through the coil and we short circuit it, it will only make the magnet stronger!, but not opposing. These two sentences of Faraday and ferry on page 139 are in paradox with each other because the back E.M.E. only occurs when we move a magnet or a coil, or the coil is wound in the wrong direction on a magnet.

Please investigate finis law in relation to ungovertional generators and motors.

BACK E.M.F. IN CIS

Back E.M.F. is explained away by NOT moving a magnet through a coil or a coil through a magnetic field. Therefore we make a flux change by rotating laminated iron and brass segments and/or other magnetic materials, only past a coil on a magnet, stationary on the outside of the rotor. The electrical current produced in the coil while the flux change has taken place with a moving rotor, is in the same direction. as the original permanent magnetic flux direction winch it is on. Therefore, they are lO opposing, as in a conventional

To any change, which refers to making electricity by flux change any way you want, does not apply to the word any, only to the statement of moving a magnet through, or past a coil. contradicting itseif.

THE ELECTRO MAGNETIC MOTOR
OTIS EXEEAENED $4-22 \cdot 83$

Iwo coils on each core (one A.C. - one D. C.) self energized controlled by micro processors and/or coiners, capacitor discharge which in turn will give us aagnetizm on the core, which in turn will give us pulsed magnetic rotation of the rotor.

Test- results of the Nulier generstor in Canada
A $45 . /$ Sept. 97

3.

 TivartFor the paet oisht monthe Active Marketins Led. hat suppertes the cevelopeent of a mametic genereter by mis. Wilneln mular of the country canada.

Prier to Active Marketins' involvement meny oreminent pelentlets fran erounc the moria had viown millato seonnoleg and expresed tremendous oftimitm thet over unity eoula be enievad 18 the project wes properiy Iundet.

So thio alm Active marmeting providea fundine and prefabsiomal perbonnel fequifed to determino the Fecelbility of the tennolop. Muncine ror the project eseouled one

The mahine wat eonetrueted in seocrande to nur.

 previted below:

 the semeretion of electrical output pomer. the eeond eosplentation was a cealier moel undne 8 gamepius -Cobalt menets ane 7 aluminum neet oxensnger oelie for infuetivaly moptins mater or siceilep piuses.

Foth AC and DC Arive motore mere unad to pevide the input power needed to meintein a fotor mowe of 2000 to 3000
 rebriented unt tested on the meneretor oonsipuresion. Aesisionaliy e eoild tete DC pulse motor weo eonormetea unime four driver coila and the 16 rotor mantite power the aleterieal sentrator.

The tent equipment used to verify perfexmences consist ad of Nitechi cuel trane to mis ofcilicscope. Fluke hina velt soter, and an Amprobe- 1000 AC/DC hall offect mare meter.

Ower thirty teate ware concluded with the electic senmpator. The output colle mer metened electriesily in palte pelor to testins to maximize power output and minimize pule translent loests. Both DC mectified and ac output pemer Peourmeents ware conducted usint veriod non-ineuetive tent lenas. Input ponem we corforted for pomer factor mille usime aC Arive motore. The resulin of the teste revenied amimain output to input ponar ratio ot 0.56 por both AC and DC mectizimd meamumenta. Testine with the nolic etete pulat motor wes not succestul due to extanelve transient obikes predmod m the colleosing nemetie pleld in the tiver
 - more conventional bruan and eqmutator asetem.

Fiftern teete wre coepleted with the induatien heating confiruration. Tranciont as mell at eteacy otete tenta mate conducsed. Resulte indicated that the deslin man aear unsty

 indieatad output to input patien pencine fees 0.36 te 0.66. Eiletivy niener then the senerater testins. The sintuelen

 output/ingut Fomer patio wee the eeme.

In conciucion the present syetel eonfigung does not oberate over-unity ene the odd/even princisal does mot prove to De brieficisi suring cantsurows operstiom.

Baed on the atove reeulte. Active marketing has suspenced fundine ror the project until further ecientieic evionen indicate the teahnolosy can be develeped euecessfuliy.

In cienins. I would like to expreet me eratitude to the bany buetmepsten and geverniente free around the mold who

 braim Aetim mepmeting and thelp paet businese acperiences.

Aeseletwhesive Mantetins L84.

Energy Conference Reports

Scientists Express Amazement at Muller Demonstration

Copyright © 1990 by Jeane Manning
"You're violating the Laws of Conservation of Energy," a scientist from Maryland exclaimed to Bill Muller of Penticton, B.C., Canada. He was among a group of participants, at the Society for Scientific Exploration (SSE) me_...g ir; August, gathered around a small experimental apparatus. It was sitting on the sidewalk outside a building on the Stanford University campus, where the SSE meeting was held.

The small-scale experiment had been devised by Muller to test what is happening in his larger ma. chine. The expenmental apparatus contained two of the specially-wound "driver" coils (which go into Muller's magnet motor) stacked face-to-face, two electrolytic capacitors and a ful: wave bridge for DC (direct currenti, a!' on a strip of Plexigias.

The researchers had brough: testing equipment - a multimometer and cur. rent probe - and showed onlookers what happened when the cord on the apparatus was plugged into an electr: cal outlet outside the building.

The equipment showed 2.9 amperes of the 115 -volt current going into the little demonstration apparatus. Mult plied, that means the input was 3335 watts AC. But the output was measured at 2.5 amps and 153 voits 382.5 watts DC - which caused heacscratching and amazement among SSE members and guests.

Muller and his engineer Gerald Diel came up with the experiment in order to prove that the materials they use do "boost" - or in other words amplify the power flowing through them. Usually the power comes from the process of moving super-powerful magnets past the special coils, the researchers explain. The experiment was to try using

AC (altemating current) on a lineup of components, instead of havng the magnets passing by the coils

Eliminates Core Losses

The materals include amorphous metal cores inside the coils. Muller was one of the first independent researchers to work with amorphous metals. otherwise known as metaliic glasses. The alloy was developed to cut down on heat losses in transiomers for utility companies. In Muller's machine, the beneft is that the amorphous-metal core doesn: oppose the next oncoming magnet.

Muller invented the brushiess magnet motor and generator in which a flywheel rotates super strong magnets. spaced along its penphery, past coris containing amorphous metal cores. The machine contains an odd-number/ even-number configuration of poles/ magnets so that the wheel is never stuck in one position. Over the years Muller refined his concept into a sophisticated device that has no static (stopped) position and therefore tums easily despite the powerfult holding force of the new magnets. A further refine. ment has been the addition of an electromagnet which periodically kicks a flywheel magnet forward just after it passes the electromagnet. Thas spi::second timing is done by elect:on:ic
switching: a microprocessor controks the process of flashing current into the coil which then briefly becomes an activated electromagnet, of a polarity to repe! the flywheel magnet and this keeps the wheel rolling.

Displayed Magnet Motor

When Bill and llona Muller and Mulier Technologles engineer Geradd Diet were invited to the SSE meeting, they in turn asked associates in Calilomia, Ray Camaano and James Warthan, tobring a sample of the Muller motor/generator.

Driving a van from their homes in San Jose to Stanford, Camano and Warthan hauled the 80 -pound version which they had buili. The van was parked near the SSE meeting place. and there Muller and associates demonstrated their hardwere to scores of SSE participants, in small groups.

Regarding whether his machine can be both a motor and a generator at the same time. Muller says, "ultra-fast switching ability - nanosecond timing" is a key to its being both. It can "generate when a magnet approaches a coil, and "motor" as the magnet passes the coils. A computer controls when the device is operating as a motor turning its shaft, and when it is generating electricity. The generated electricity is stored momentarily in capacitors to be used when the machine switches to being a motor.

Muller said his own machine has tested at between eight to one and five to one "over unity" (more power out than goes into a device).
What about the machine demonstrated to SSE participants? Is it "over unity"? Camaano replied that the Muller model reproduced in San Jose by himsell and Warthan "hasn't been tested under load. But Bill's (machine) has. ${ }^{\text {" }}$

San Jose Innovators Design New Machine

Copyright © 1990 by Jeane Marning

Could a "free energy" car be approaching over the horizon? At the Society for Scientific Exploration meeting, raum \& zeit intervieued two Californians who said they believe they could, in less than a year, build a Muller magnet motor to power a vehicle.

R
ay Camaano and James Warthan of San Jose have already built a version of the motor/generator, in cooperation with its inventor. Bill Muller of Penticton, B.C., Canada. When Muller was invited to the SSE meeting. he asked his two San Jose associates to bring their machine to Stanford. Otherwise, Muller would have had to transport his own demonstration model through the bureaucracy of the inter. national border.

Camasano, a 27 year old machinıst/ mechanic, and Warthan, a 45 year old computer programmer, say they would be only about six months away from running a car with the magnet motor "If we had the funds. "They figure they need $\$ 20,010$ to carry out their plan of powering a standard VW Rabbis pickup with a device that any auto mechanic could install into a vehicle in a day or two.
"We could have two battenes - one that the magnet motor-generator charges and one that it runs off of." Timing would be controlied by a microprocessor control circuit. "Braking the car to a dead stop would be no problem," Camaano says. "The coils would act as brakes. "A "cogging effect" would slow down the car. As in the incurrent machine, the microprocessor would switch the motor/generator to the generator mode, inducing a braking effect known as "regenerative braking" on the car.

Microprocessor Control Circuit

The switching is controlled by a mi-
croprocessor control circuit which receives data from an optical encoder as to the magnet/coil pair relationships. then activates mosfet (metal oxide silicon field effect transistor) switches to energize the electromagnets.

Regarding the Muller magnet motor, which uses poweriul neodymium-iron. boron permanent magnets, Camaano says, "We're harmessing vonexes." He also commented on matching capacitance and inductance, and tuned circuits: "Tesla did almost everything with resonant circuits. When you make a magnetic field resonate. the power of the field goes way up."
So far the San Jose duo has spent thousands of dollars on researching and building the machine. On their wish-list is a $\$ 5.000$ dymameter for testing. Realistically, however, their next purchase was to be the new mosfets which can handle 1.000 volts at 50 amps . The powerful magnets, inducing current as they tum past the coils, are responsible for spikes of current which previously bumed out components before the new mosfets were available and protection devices

Their microprocessor control circuit was designed and developed by Jack Masterman for Light Engineering (Camaano and Warthan's company). and the protorype control unit was developed by the same company.
The microprocessor can be interiaced with a personal computer. Camaano explains. "Through the personal computer we can control all functions
of the motor/generator while it is running. Therefore, duty cycle, tining advance, motor/generator mock are all adjustable while the machine is nunning - a feat that is impossibte for conventional commutator!!"
"The status of all functions can be continuously monitored by the personal computer, and once the optimum operating parameters are esrablished, this data can be permarently programmed into the microprocessor for production models."

The two researchers say that powering a car would be fairty straight-forward. The existing clutch, flywheel and tansmission can be used. "An adapter plat would need to be made to mount the motor to the transmission, and the shaft of the motor would need to be machined to accept the existing fly. wheel. Motor speed can also be con. trolled by microprocessor.*
"Then we would have a tree energy electric car! ${ }^{-}$

On Oct. 15, 1990, the innovators from San Jose gave rammenit a further update on activities of Light Engineenng: "We have a new motor/ generator under construction that utilizes all the principles we know ol, anca should produce free energy ratios far in excess of that which is known at this time. We are using twin counter-rotating discs, with the motor section down toward the centur of the discs and the generating section out on the penphery.
"What is required to generate power is a fluctuating magnetic fied. The conventional way to generate electricity is by moving magnets past coils. The problem with this is the more power you take out of the generator. the more torque is requires to turn the shaft, due to Lenz's law. What happens is, the coil repels the maget coming in, and holds onto it going away (in a

Energy Conference Reports

Researchers Share Information

Muller has cooperated long distance by sharing information with the two San Jose men as they built their model of his motor. Both the Canadians and the Califomians are experimenting to find the best balance between voltage and amperage for doing work, Camaano said. He and Warthan have built coils in which they aim for higher voltage and lower amperage. "Maybe 100 volts at ten amps."

In the Muller motor/generator model they took to Staniord, the San Jose researchers were using fewer magnets - eight magnets turning past seven coils - in their flywheel than Muller As they leamed from Muller, Camaano and Warthan were using neodymium-iron-boron (NdFeB) magnets, of a size two inches square and one inch thick. which Camano said are 37 megagauss in strength. This means, said Muller. that each magnet has a holding force of 2,000 times its own weight.

Over the years of his research. Muller has informed thousands of people that a permanent magnet is a perpetual energy source, carrying "enormous ampoere pressures within itseif. "Unlike a battery, the new breed of superpowerful permanent magnet doesn't tose strength over decades, or with use.

Muller Educates

As for the Law of Conservation of Energy, Muller joins leading-edge physicists in describing the universe as an open system. A more-output-than. input device would break the Law if operating within a closed system.
In addition to new materials such as permanent magnets and amorphous metals making it possible for Muller to do what formerly was not possible. new advancements in electronics aiso
make new machines leasible. High curren: can be switchec in whatever direction des:ree. Mu':er explar.s, "so we are now abie to construc: permanent magnet motors, large or smal.. that are also generators at the same time. ${ }^{\text {" }}$
"We can now direct back motive forces - that are normally against the masnet - back into the same direction as the motor. Withou: the use of brushes

Muller began his career as an electromechanic for tre giant Siemens electrical company of West Germany: with training in high-frequency work Later challenges inciuded bringirs power to mines in norihern Canaca. and then starting his own applance repair business in Bntish Columbia His experimentation urth magnets goes back to 1966

Increasing Recognition

August of 1990 was a step lorward in public recognition of Muller Technologies. Muller is still receiving letters and phone calls from people who saw his demonstrations at Stanford and. on August 11 and 12. at the Solar Energy Expo and Rally (SEER) in Willis, Cahfomia. Muller made two of those letters available to raum\&zoit

For example, one scientist with a Ph D. director of a center for leading-edge research, wrote Muller: "... I was impressed with your demonstrations at the SSE meeting this August."

An engineer irom Berkeley urites to Muller: "... about your fantastic machine. The simplicity of hardware coupled with complexity of controi makes your dynamo approach the design of nature."
llona Muller repors that at the Solar Energy Exposuion, they showed the Muller motor-genera:or to manyy scia:
car innovators including those with the Sianford University car, which, incidentally, won first prize). At the SEER gathering "we also met with Dr. Kincheloe again." Dr. Robert Kincheloe is a Stanford University researcher who has in the past demonstrated willingness to examine selected unorthodox energy-generating hardware.

Energy Conference Reports

conventional design)."

- Our new machine does not do this We keep the magnets and coils stationary in relationship to each other, and move Metglas (amorphous metal) pole pieces in between, thus causing a fluctuating masnetic field which in tum
produces power But very hatle torque is required to generate power with :his design
"The motoring section is unique also We have an arrangement of perma. nent magnets that produce a slight motoring effect, and we only use very
little current to enhance the motoring of the discs."
"It is computer-controlled and the circuits are now in development and should be completed within two months."

Just a

Energy Conference Reports

Researchers Share Information

Muller has cooperated long distance by sharing information with the two San Jose men as they built their model of his motor. Both the Canadians and the Califomians are experimenting to find the best balance between voltage and amperage for doing work, Camaano said. He and Warthan have built coils in which they aim for higher voltage and lower amperage. "Maybe 100 volts at ten amps."

In the Muller motor/generator model they took to Staniord, the San Jose researchers were using fewer magnets - eight magnets turming past seven coils - in their flywheel than Muller As they leamed from Muller, Camaano and Warthan were using neodymium. iron-boron (NdFeB) magnets, of a size two inches square and one inch thick. which Camaano said are 37 megagauss in strength. This means, said Muller. that each magnet has a holding force o: 2,000 times its own weight.

Over the years of his research. Muller has informed thousands of people that a permanent magnet is a perpetual energy source, carrying "enormous ampoere pressures within itself. " Untike a battery, the new breed of superpowerful permanent magnet doesn't lose strength over decades, or with use.

Muller Educates

As for the Law of Conservation of Energy, Muller joins leading-edge physicists in describing the universe as an open system. A more-output-thaninput device would break the Law if operating within a closed system.
In addition to new materials such as permanent magnets and amorphous metals making it possible for Muller to do what formerly was not possible. new advancements in electronics also
make new machines leasible. High current can be switched in whatever direction des:red. Muller explairs, "so we are now abre :o constnc: pertanent magnet motors, large or sma... that are also generators at the same time."
"We can now direct back motive forces - that are normally agans: the magnet - back into the sarre direction as the motor. Withou the use cibrushes

Muller began his career as an electromechanic for the giant Siemens electrical company of West Germany; unth training in high frequency work. Later chalienges included bringing power to mines in norhem Canads and then stanus his oun applance repair business in British Columbia His experimen:ation urth magnets goes back to 1966

Increasing Recognition

August of 1990 was a step forward in public recognition of Muller Technologies. Muller is still receiving letters and phone calls from people who saw his demonstrations at Stanford and. on August 11 and 12, at the Solar Energy Expo and Rally (SEER) in Wilhts, Calh. fomia. Muller made two of those letters available to raum\&zeit

For example, one scientist with a Ph D. director of a center for leading-edge research, wrote Muller: "... I was im. pressed with your demonstrations at the SSE meeting this August."

An engineer from Berkeley writes to Muller: "... about your fantastic machine. The simplicity of hardware coupled with complexity of contro: makes your dynamo approach the cesign of nature."
liona Muller repors that at the Sola: Energy Exposition, the; showed the Muller motor-generator to many' sola:
car innovators (including those with the Stanford University car, which, incidentally, won first prize). At the SEER gathering "we also met with Dr. Kincheloe again." Dr. Robert Kincheloe is a Sianford University researcher who has in the past demonstrated willingness to examine selected unorthodox energy-generating hardware.

[^0]: I Ich erwarte, daß je nach der Stromstaria and Einwirkngsuaver verschiedene Werte fur hohienstoff gefunden werden.

