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To the memory of Hendrik Brugt Gerhard Casimir, who contributed so 
prodigiously to physics. 





Preface 

I first became interested in the Casimir effect [l] in 1975 when I heard 
the lectures of Julian Schwinger on the subject, in which he succeeded 
in deriving the Casimir force between parallel conducting plates without 
making reference to zero-point energy, a concept foreign to his non-operator 
version of quantum field theory, source theory. That presentation shortly 
appeared as a brief letter [2]. He justified this publication not merely as 
a rederivation of this effect in his own language, but as a resolution of the 
discrepancy between the finite-temperature effect first obtained by Sauer 
and Mehra [3, 4, 5, 6] and that obtained from the Lifshitz formula for 
parallel dielectrics [7, 8, 9]. Because of this discrepancy, Hargreaves [10] 
had called it "desirable that the whole general theory be reexamined and 
perhaps set up anew." Schwinger attempted just that. Unfortunately, he 
was unaware that the simple error in Lifshitz's paper had been subsequently 
corrected, so this was a non-issue. Nevertheless, this sparked an interest in 
the Casimir effect on Schwinger's part, which continued for the rest of his 
life. 

Within a year or so Lester DeRaad and I, his postdocs at UCLA, joined 
Schwinger in reproducing the results of Lifshitz [ll]; aside from a somewhat 
speculative treatment of surface tension, this paper contained few results 
that were new. Lifshitz wrote a somewhat peevish note to Schwinger com­
plaining about the elevation of the temperature error to a significant dis­
crepancy. But what was significant about this paper was the formulation: 
A general Green's dyadic procedure was developed that could be applied 
to a wide variety of problems. That procedure was immediately applied 
to a recalculation of the Casimir effect of a perfectly conducting spherical 

vii 
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shell, which contrary to the expectation of Casimir [12] had been shown by 
Boyer [13] to be repulsive, not attractive. We derived a general formula, 
but then became stuck on its evaluation for a few months; in the meantime, 
the paper of Balian and Duplantier [14] appeared. DeRaad and I quickly 
found an even more accurate method of evaluation, and our confirmation 
of Boyer's result followed [15]. 

Thus my interest in the Casimir effect was launched. Before I left UCLA 
I explored the Casimir effect for a dielectric sphere, with inconclusive but 
seminal results [16]. My interest was rekindled a year or so later, when 
Ken Johnson proposed adapting the Casimir effect in a bag model of the 
vacuum [17]. Since he used the estimate from both interior and exterior 
modes, which seemed hardly applicable to the confinement situation of 
QCD, I proposed a better estimate based on interior contributions only [18, 
19, 20], and followed it by examining the local Casimir contribution to the 
gluon and quark condensates [21]. I tried to improve the global estimates 
of these QCD effects shortly after I moved to Oklahoma, by attempting to 
elucidate the cutoff dependence of the interior modes [22]. I also worked 
out the unambiguously finite results for massless fermions interior and ex­
terior to a perfect spherical bag [23] (in informal collaboration with Ken 
Johnson), and, somewhat earlier with DeRaad, computed the more difficult 
electromagnetic Casimir effect for a conducting cylinder [24]. 

In the late 1980s I was interested for a while in the Casimir effect in 
Kaluza-Klein spaces, particularly when the dimensionality of the compact-
ified space was even [25, 26, 27], growing out of the work of Appelquist 
and Chodos [28] and Candelas and Weinberg [29]. A few years later I 
wrote two papers with Ng on the Maxwell-Chern-Simons Casimir effect [30, 
31], the second of which signaled a serious problem for the Casimir effect 
in a two-dimensional space with a circular boundary. This was clarified 
shortly thereafter in a paper with Bender [32], where we computed the 
Casimir effect for a scalar field with Dirichlet boundary conditions on a D-
dimensional sphere. Poles occur for arbitrary positive even D. I extended 
the work to include the TM modes, which exhibited qualitatively similar 
behavior [33]. 

It was the still inadequately understood phenomenon of sonolumines-
cence [34] that sparked some of my most recent work in the field. Schwinger, 
in the last years of his life, suggested that the mechanism by which sound 
was converted into light in these repeatedly collapsing air bubbles in water 
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had to do with the "dynamical Casimir effect" [35, 36]. After his death, I 
concluded he was wrong [37, 38]. But, probably the most interesting result 
of this work was a simple finite calculation of the regulated and renor-
malized van der Waals energy of a dielectric sphere. A year later Brevik, 
Marachevsky, and I, and others [39, 40, 41, 42], demonstrated that this 
coincided with the Casimir energy of a dilute dielectric ball, as formulated 
by me nearly two decades previously [16], suitably regulated and renormal-
ized. At the same time I discovered that the Casimir energy of a dilute 
cylinder (with the speed of light the same inside and outside) vanished, as 
did the regulated van der Waals energy for a purely dielectric cylinder [43, 
44]. The significance of these null results is still not clear. 

This recounting of my personal odyssey through the Casimir world of 
course does no justice to the many other workers in the field, whose con­
tributions I will attempt to more fully trace in the following. It is rather 
intended as a guide to the reader so my own personal biases may be dis­
cerned, biases which will be reflected in the following as well. Although I 
will attempt to survey the field, I will, of necessity, approach it with my 
own personal viewpoint. I will make some attempt to survey the literature, 
but I beg forgiveness from those authors whose work I slight or fail to cite. 
Hopefully, a document with an individual orientation will still have value 
in the new millennium. 

Finally, I must thank the US Department of Energy for partial support 
of my research over the years, and my various collaborators whose con­
tributions were invaluable. And most of all, I thank my wife, Margarita 
Bafios-Milton, without whose support none of this would have been possi­
ble. 

Kimball A. Milton 
Norman, Oklahoma 

April, 2001 
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Chapter 1 

Introduction to the Casimir Effect 

1.1 Van der Waals Forces 

The understanding of the nature of the force between molecules has a long 
history. We will start our synopsis of that history with van der Waals. It 
was early recognized, by Herapath, Joule, Kronig, Clausius and others (for 
an annotated bibliography see ter Haar [45]), that the ideal gas laws of Boyle 
and Gay-Lussac could be explained by the kinetic theory of noninteracting 
point molecules. However, these laws were hardly exact. Van der Waals [46, 
47] found in 1873 that significant improvements could be effected by includ­
ing a finite size of the molecules and weak forces between the molecules. 
At the time, these forces were introduced in a completely ad hoc manner, 
by placing two parameters in the equation of state, 

(p+£)(v-b) = KT. (1.1) 

Of course, it required the birth of quantum mechanics to begin to un­
derstand the origin of atomic and interatomic forces. In 1930 London [48, 
49] showed that the force between molecules possessing electric dipole mo­
ments falls off with the distance r between the molecules as 1/r6. The 
simple argument goes as follows: The interaction Hamiltonian of a dipole 
moment d with an electric field E is H = —d • E. From this, one sees that 
the the interaction energy between two such dipoles, labelled 1 and 2, is 

(dj • d2y - 3(d t • r)(d2 • r) 
#int = ~5 (1.2) 

where r is the relative position vector of the two dipoles. Now in first 

1 
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order of per turbat ion theory, the energy is given by (Hint), but this is zero 

because the dipoles are oriented randomly, (dj) = 0. A nonzero result first 

emerges in second order, 

VeS=\0 E^Enl (1"3) 

which evidently gives Veg ~ r~6. This is a short-distance electrostatic 

effect. 

In 1947 Casimir and Polder [50] included retardation. They found tha t 

at large distances the interaction between the molecules goes like 1/r7. 

This result can be understood by a simple dimensional argument. For 

weak electric fields E the relation between the induced dipole moment d 

and the electric field is linear (isotropy is assumed for convenience), 

d = a E , (1.4) 

where the constant of proportionality a is called the polarizability. At zero 

temperature , due to fluctuations in d, the two atoms polarize each other. 

Because of the following dimensional properties: 

[d] = eL, [E] = eL~2, => [a] = L 3 , (1.5) 

where L represents a dimension of length, we conclude t ha t the effective 

potential between the two polarizable atoms has the form 

ai02 he 

while at high temperatures the 1/r6 behavior is recovered, 

VeB~?^rkT, T^oo. (1.7) 

The London result is reproduced by noting tha t in arguing (1.6) we implic­

itly assumed tha t r > A , where A is a characteristic wavelength associated 

with the polarizability, tha t is 

a{to) « a(0) for w < ^. (1.8) 
A 

In the opposite limit, 

h Z"00 

Ksff ~ -s- / dLoai(u>)a2(i>j), r « A . (1.9) 
r Jo 
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These results, with the precise numerical coefficients, will be derived in 
Chapter 3. 

1.2 Casimir Effect 

In 1948 Casimir [l] shifted the emphasis from action at a distance between 
molecules to local action of fields.* That is, the phenomenon discussed 
above in terms of fluctuating dipoles can equally be thought of in terms of 
fluctuating electric fields, in view of the linear relation between these quan­
tities. This apparently rather trivial change of viewpoint opens up a whole 
new array of phenomena, which we refer to as the Casimir effect. Specifi­
cally, in 1948 Casimir considered two parallel conducting plates separated 
by a distance a. (See Fig. 2.1.) Although (E) = 0 if there is no charge on 
the plates, the same is not true of the square of the fields, 

( E 2 ) ^ 0 , ( B 2 ) ^ 0 , (1.10) 

and so the expectation value of the energy, 

H=1-J(dr)(E2(r)+B\r)), (1.11) 

is not zero. This gives rise to a measurable force on the plates. It is not 
possible without a detailed calculation to determine the sign of the force, 
however. It turns out in this circumstance to be attractive. Much of the 
following chapter will be devoted to a careful derivation of this force; the 
results, as found by Casimir, for the energy per unit area and the force per 
unit area are 

TV d TV 
f = ^ _ - _ f t C ; j : =—-S = -r-^—M- (1-12) 

720a3 ' da 240a4 v ' 

The dependence on a is, of course, completely determined by dimensional 
considerations. Numerically, the result is quite small, 

JT=-8 .11MeVfma- 4 = -1.30 x 10- 2 7 Nm 2 a" 4 , (1.13) 

"This was due to a comment by Bohr in 1947, to the effect that the van der Waals 
force "must have something to do with zero-point energy." In April 1948 Casimir 
communicated a new derivation of the force between an atom and a plate, and between 
two atoms, based on quantum fluctuations to a meeting in Paris [51]. For further history 
of the development of the Casimir effect, see Refs. [52, 53]. 



4 Introduction to the Casimir Effect 

and will be overwhelmed by electrostatic repulsion between the plates if 
each plate has an excess electron density n greater than I/a2, from which 
it is clear that the experiment must be performed at the /jm level. Nev­
ertheless, there have many attempts to directly measure this effect, al­
though somewhat inconclusively [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 
64, 65]. [The cited measurements include insulators as well as conduct­
ing surfaces; the corresponding theory will be given in Chapter 3.] Until 
recently, the most convincing experimental evidence came from the study 
of thin helium films [66]; there the corresponding Lifshitz theory [7, 67, 
8] was confirmed over nearly 5 orders of magnitude in the van der Waals po­
tential (nearly two orders of magnitude in distance). However, the Casimir 
effect between conductors has recently been confirmed to about the 5% 
level by Lamoreaux [68, 69, 70], to perhaps 1% by Mohideen and Roy [71, 
72, 73], and by Erdeth [74], and to about the same level very recently by 
Chan, Aksyuk, Kleiman, Bishop, and Capasso [75]. 

In general, let us define the Casimir effect as the stress on the bounding 
surfaces when a quantum field is confined to a finite volume of space. The 
boundaries may be described by real material media, with electromagnetic 
properties such as dielectric functions, in which case fields will exist on 
both sides of the material interface. The boundaries may also represent the 
interface between two different phases of the vacuum of a field theory such 
as quantum chromodynamics, in which case colored fields may only exist in 
the interior region. The boundaries may, on the other hand, represent the 
topology of space, as in higher-dimensional theories (e.g., Kaluza-Klein or 
strings), where the extra dimensions may be curled up into a finite geometry 
of a sphere, for example. In any case, the boundaries restrict the modes 
of the quantum fields, and give rise to measurable and important forces 
which may be more or less readily calculated. It is the aim of the present 
monograph to give a unified treatment of all these phenomena, which have 
implications for physics on all scales, from the substructure of quarks to the 
large scale structure of the universe. Although similar claims of universality 
of other particle physics phenomena are often made, the Casimir effect truly 
does have real-world applications to condensed-matter and atomic physics. 

There are many ways in which the Casimir effect may be computed. 
Perhaps the most obvious procedure is to compute the zero-point energy 
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in the presence of the boundaries. Although 

2 
modes 

is terribly divergent, it is possible to regulate the sum, subtract off the 
divergences (one only measures the change from the value of the sum when 
no boundaries are present), and compute a measurable Casimir energy. 
(A simple version of this procedure is given in Sec. 2.2.) However, a far 
superior technique is based upon the use of Green's functions. Because 
the Green's function represents the vacuum expectation value of the (time-
ordered) product of fields, it is possible to compute the vacuum expectation 
value of (1.11), for example, in terms of the Green's function at coincident 
arguments. Once the energy U is computed as a function of the coordinates 
X of a portion of the boundary, one can compute the force on that portion 
of the boundary by differentiation, 

Similarly, one can compute the stress-energy tensor, TM", from the Green's 
function, and thereby compute the stress on a boundary element, 

dF 
— = (Tnn), (1-16) 

where n represents the normal to the surface element da, and where the 
brackets represent the vacuum expectation value. 

The connection between the sum of the zero-point energies of the modes 
and the vacuum expectation value of the field energy may be easily given. 
Let us regulate the former with an oscillating exponential: 

oo a 

where a labels the modes, and, because we assume r goes to zero through 
positive values, the contour of integration in the second form may be closed 
in the lower half plane. For simplicity of notation let us suppose we are 
dealing with massless scalar modes, for which the eigenfunctions and eigen­
values satisfy 

- V 2 V a = w ^ a . ( i . is) 
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Because these are presumed normalized, we may write the second form in 
(1.17) as 

J 2-Kl J K ' ^ Ljl-LO2 ~l 
J J a a 

H ' ( * c ) / ^ G ( x , x ; w ) e - i u ( t - t ' ) 

t^v 

(dx)d°d'0(<P(x)4>(x>))\x^x, (1.19) 

where the Green's function G(x, t;x',t') satisfies 

f - V 2 + ^ ] G(x, *; x', t') = S(x - x')S(t - t'), (1.20) 

and is related to the vacuum expectation value of the time-ordered product 
of fields according to 

G ( x , t ; x ' , 0 = ^(T0(x, t)^(x ' ,O>- (1-21) 

For a massless scalar field, the canonical energy-momentum tensor is 

T^ = d»4>dv§ - ^g>il/dxcj)dX(l>. (1.22) 

The second term involving the Lagrangian in (1.22) may be easily shown 
not to contribute when integrated over all space, by virtue of the equation 
of motion, —d2cj) = 0 outside the sources, so we have the result, identifying 
the zero-point energy with the vacuum expectation value of the field energy, 

^ X > « = /WT 0 0 (X)> . (1.23) 
a 

In the vacuum this is divergent and meaningless. What is observable is the 
change in the zero-point energy when matter is introduced. In this way we 
can calculate the Casimir forces. 

Variational forms may also be given. For example, in Chapter 3 we will 
derive the following formula for the variation in the electromagnetic energy 
when the dielectric function is varied slightly, 

5U=* 
1 

J{dr)^6e(T,u)Tkk(r,r',w), (1.24) 
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£ l £3 £2 

Fig. 1.1 Geometry of parallel dielectric surfaces. 

where T is the electric Green's dyadic. From this formula one can easily 
compute the force between semi-infinite parallel dielectrics, as shown in 
Fig. 1.1. The celebrated formula of Lifshitz [7, 67, 8] is obtained in this 
way for the force per unit area, 

T 
1 

"8^2 
d( / dk22K3 

K3 + Hi K3 

K3 - Ki K3 - K2 

J^Le2K3a 

+ 
K/o ) rvi rCrt V 2 „ 2 K 3 O 

Kl K3 ~ K2 
- 1 (1.25) 

Here the frequency integration has been rotated 7r/2 in the complex fre­
quency plane, ( = —iu>, £ real, and the following abbreviations have been 
used, 

tf k2 + t \ 
K 

e 
(1.26) 

It is this formula which was spectacularly confirmed for a thin film of helium 
on a quartz substrate in a beautiful experiment by Sabisky and Anderson 
[66]. By taking the appropriate limit, 

£3 1, ei = «2 (1.27) 

the Lifshitz formula (1.25) reproduces the Casimir result for parallel con­
ductors, (1.12). Furthermore, by regarding the dielectrics to be tenuous 
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gases, 

3̂ -> 1, £i,2 = 1 + 47rA/i,2<*i,2, (1.28) 

A/" being the density of molecules of the two types and a being the molecular 
polarizabilities, the London [49] and Casimir and Polder [50] intermolecular 
forces, (1.9) and (1.6), respectively, may be immediately inferred: 

3 n r 
7T7-6 J0 

VeR = - / dCctiiQaiiQ, r « A , (1.29) 
wr° J0 

23 a.\otn^ , , 
VeB = —. -j+hc, r » A . (1.30) 

1.3 Dimensional Dependence 

We have already noted above that the sign of the Casimir effect cannot 
be deduced until after the entire calculation is completed. This is be­
cause the starting expressions are purely formal, and require regulariza-
tion and a careful subtraction of infinities before a finite force can be ex­
tracted. Nevertheless, the results quoted above demonstrate that in the 
one-dimensional geometries considered to this point the Casimir force is 
strictly attractive, whether one is dealing with conductors or dielectrics, 
and whether the helicity of the field is 0 or 1. [The same is true for 
spin 1/2; see Sec. 2.7.] This is certainly in accord with the interpretation 
of the effect as the sum of van der Waals attractions between molecules. 
Accordingly, Casimir suggested in 1956 [12] that the Casimir force could 
play the role of a Poincare stress in stabilizing a classical model of the 
electron. In this way he hoped that a value for the fine structure con­
stant could be calculated. Unfortunately, when Boyer did the calcula­
tion in 1968 [13] he found a result which was repulsive; Boyer's calcula­
tion was a tour de force, and has been independently confirmed [76, 14, 
15]: The stress on a perfectly conducting spherical shell of radius a is 

he 
<S sphe re=—(0.04618...). (1.31) 

The details of this calculation will be given in Chapter 4. Also there will 
be given the corresponding result for fermions [23]: 

Sphere = ^ (0 .0204 . . . ) . (1.32) 
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These nonintuitive results immediately raise the question of what happens 
at intermediate dimensions. A partial answer was given in Ref. [24], where 
the Casimir effect was derived for a right-circular cylinder, with a small, 
attractive result for the force per unit area 

he 
^cylinder = - ^ ( 0 . 0 0 4 3 2 . . . ) . (1.33) 

(See Chapter 7.) 
Another context in which the dimensional dependence of the Casimir 

effect was studied was for Kaluza-Klein theories in 4 + N dimensions, 
where the extra dimensions were compactified into a sphere (or products 
of spheres). For odd N, and a single sphere SN, the story was given by 
Candelas and Weinberg [29]: for example, for a scalar field, for Â  = 1 the 
Casimir energy is negative; then for N = 3, 5, . . . , 19, the Casimir energy 
is positive, and for N > 21 the energy becomes increasingly negative. [See 
Table 10.1 and Fig. 10.2.] For even Â  the result is divergent; if a cutoff is 
introduced, the coefficient of the logarithmic divergence is negative for all 
N [25]. [See Table 10.2 and Fig. 10.5.] These calculations will be treated 
in detail in Chapter 10. 

Until recently, the balance of our knowledge of the dimensional de­
pendence of the Casimir effect referred to the force computed in paral­
lelepiped geometries, where only interior modes are computed. Calculations 
of the Casimir energies inside rectangular cavities were first given by Lukosz 
[77] (see also [78, 79]) and later by Ruggiero, Zimerman, and Villani [80, 
81] and by Ambj0rn and Wolfram [82]. In general these results are highly 
questionable, because no exterior contributions can be included, because it 
is impossible to separate the Klein-Gordon equation, for example, in the 
exterior of a rectangular cavity. (Thus we will defer the discussion of these 
calculations until Sees. 6.1 and 7.1.2.) The exception is the case of infinite 
parallel plates embedded in a D-dimensional space and separated by a dis­
tance 2a; that is, there is one longitudinal dimension and D — 1 transverse 
dimensions. The result for the force per unit area for a scalar field satisfy­
ing Dirichlet or Neumann boundary conditions as found by Ambj0rn and 
Wolfram [82] is [see (2.35)] 

T = _a-D^2-2D-i^n^i2DV f£±l\ ((D + 1), (1.34) 

which we have plotted in Fig. 1.2. Note that T has a simple pole (due to the 
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D 

Fig. 1.2 A plot of the Casimir force per unit area T in (1.34) for — 5 < D < 5 for the 
case of a slab geometry (two parallel plates). 

gamma function) at D = — 1. However, T is not infinite at the other poles 
of the gamma function, which are located at all the negative odd integral 
values of D, because the Riemann zeta function vanishes at all negative 
even values of its argument. One interesting and well-known special case 
of (1.34) is D = l [83]: 

T\ D=l 96a2 ' 
(1.35) 

where the negative sign indicates that the force is attractive. (This was 
originally calculated in the context of the string theory for the potential 
between heavy quarks.) For the case of D = 3 we recover precisely one-
half Casimir's result (1.12) (of course, with a —> 2a), suggesting, perhaps 
misleadingly, that each electrodynamic mode contributes one half the total. 
But, all these cases are essentially one-dimensional. 

However, more recently we have examined the Casimir force of a scalar 
field satisfying Dirichlet boundary conditions on a spherical shell in D 
dimensions [32]. The details of this calculation will be given in Chap­
ter 9. The numerical results are shown in Fig. 9.1. We find that the 
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Casimir stress vanishes as D —> oo (largely because the surface area of 
a .D-dimensional sphere tends to zero as D —> oo), and also vanishes 
when D is a negative even integer. Remarkably, the stress has simple 
poles at positive even integer values of D. These results for scalar, or 
in waveguide terminology, TE modes, are generalized to include the TM 
modes as well, which behave qualitatively similarly [33]. Does this mean 
that we cannot make sense of the Casimir effect in two space dimen­
sions, an arena of tremendous interest in condensed matter physics [30, 
31]? Some hints of a resolution of this serious difficulty are suggested in 
Sec. 9.3. 

1.4 Applications 

It might seem to the reader that the Casimir effect is an esoteric aspect of 
quantum mechanics of interest only to specialists. That this is not the case 
should be apparent from the duality of this effect with van der Waals forces 
between molecules. The structure of gross matter is therefore intimately 
tied to the Casimir effect. But we can be more specific in citing true field-
theoretic application of these phenomena. 

Perhaps the first extensive reference to the Casimir effect in particle 
physics occurred with the development of the bag model of hadrons [84, 
85, 86, 87, 88, 89]. There a hadron was modeled as a quark and an an-
tiquark, or three quarks, confined to the interior of a (spherical) cavity. 
Asymptotic freedom was implemented by positing that the interior of the 
cavity was a chromomagnetic vacuum (fj, = 1), while the exterior was a 
perfect chromomagnetic conductor (fj, = oo). Predictions could readily 
be made for masses and magnetic moments, in terms of a few parame­
ters, principally, the bag constant B, the strong coupling constant as, the 
radius of the nucleon Rpj, and the "zero-point energy" parameter Z, as 
well as quark masses. These parameters were, in fact, determined from 
fits to the data. In particular, the parameter Z, which occurred in the 
bag-model Hamiltonian as a term —Z/a, where a is the bag radius, was 
assumed to be positive. In fact, Boyer's result [13] already suggested that 
was in error, since the Casimir effect for a spherical shell is repulsive. How­
ever, in this situation, there are no exterior modes, so the result is less 
clear. Nevertheless, it has been argued that a repulsive result is expected 
theoretically, and that the model must be modified correspondingly [18, 
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19]. These issues, and other hadronic applications of the Casimir effect will 
be treated in Chapter 6. See also Sec. 11.4. 

We have already referred to higher-dimensional theories, such as Kaluza-
Klein models, in which extra dimensions are curled up into finite topolog­
ical structures, where the scale is set by the Planck length. This gives 
rise to large observable vacuum energy effects [28, 29, 25]. The hope is 
that quantum fluctuations of the gravitational (and other) fields can sta­
bilize the geometry and explain why all dimensions are not of the scale 
-̂ Planck ~ 10~33 cm. Although there is now quite an extensive literature on 
this subject, progress has been slow because of the technical difficulties as­
sociated with implementing the required Vilkovisky-DeWitt formalism [90, 
91]. The status of this important interface between "unified" theories and 
cosmology will be related in Chapter 10. 

We will come back to earth with a recounting of the Maxwell-Chern-
Simons Casimir effect in Chapter 8. In two space dimensions it is possible 
to introduce a mass term for the photon without spoiling gauge invariance. 
That is, in place of the Maxwell Lagrangian we can write 

C = -l-F^F^ + -^pFaPA„. (1.36) 

The mass term has the form of the Chern-Simons topological Lagrangian 
which occur for the anyon fields perhaps relevant for the fractional quantum 
Hall effect [92, 93, 94, 95] and for high temperature superconductivity [96, 
97, 98]. Here, however, we are regarding A^ to be a physical photon field 
somehow trapped in two dimensions. We will attempt to make sense of 
the Casimir effect in two dimensions by use of the procedure described in 
Chapter 9, and contrast scalar and vector fields. Salient features include [30, 
31] 

• For parallel lines vector and scalar fields give identical attractive 
Casimir forces. This again illustrates the universal character of 
one-dimensional geometries. 

• For a circular boundary vector and scalar fields give completely 
different results for the Casimir effect; in the leading approximation, 
the scalar force is repulsive, while the vector is attractive. 

• The following dimensional reduction theorem holds true for the 
massless theory (fj, = 0): The Casimir effect for a right circular 
cylinder in (3+1) dimensions for a vector field [24], as described 
in Chapter 7, reduces, as the component of momentum along the 
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longitudinal axis goes to zero, kz —> 0, to the sum of the Casimir 
effects for a scalar and for a vector field in (2+1) dimensions: 

(3 + l ) „ - > ( 2 + l)„ + (2 + l)S ) ( k - 0 ) . (1.37) 

We will discuss the temperature dependence and possibilities of observing 
this phenomenon in condensed matter systems in Chapter 8. 

1.5 Local Effects 

To this point we have considered the Casimir effect as a global phenomenon. 
The observable Casimir force on a macroscopic bounding surface is a collec­
tive effect, and localization of the phenomenon would seem to be nonunique. 
[The nonlocalization of physical phenomena should already be familiar at 
the classical level in connection with radiation. For example, the question 
of whether a uniformly accelerated charge radiates or not is only answerable 
if the beginning and end of the acceleration process is specified; and even 
then it is only a manner of speaking to say that the radiation is associated 
with the beginning and end of the process. See, for example, Ref. [99].] 

Nevertheless, we have already indicated that construction of the energy-
momentum tensor TM" is an important route toward calculation of the 
Casimir effect. Further if one imposes conservation and tracelessness of 
that tensor in electromagnetism, 

9 M T ^ = 0, T"M = 0, (1.38) 

one can infer [100] a.unique vacuum expectation value of the energy-momen­
tum tensor for the case of parallel conducting plates located at z = 0 and 
z = a: 

(V> 

The energy density and the force per area given in (1.12) are contained 
in this result. Besides having great interest in their own right, these local 
effects could have important gravitational consequences [101]. Local effects 
also must be understood if one is to correctly interpret the divergences 
inherent in the theory. The nature of boundary divergences, a subject to 

720a4 

I 0 0 0 \ 
0 - 1 0 0 
0 0 - 1 0 

\ 0 0 0 3 / 

(1.39) 
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which we will re turn later, was first studied systematically by Deutsch and 

Candelas [102]. These issues and consequences, particularly in hadronic 

physics, will be discussed in Chapter 11. 

1.6 S o n o l u m i n e s c e n c e 

One of the most intriguing phenomena in physics today is sonolumines­

cence [34]. In the experiment, a small (radius ~ 1 0 - 3 cm) bubble of air or 

other gas is injected into water, and subjected to an intense acoustic field 

(overpressure ~ 1 a tm, frequency ~ 2 x 104 Hz). If the parameters are 

carefully chosen, the repetitively collapsing bubble emits an intense flash 

of light at minimum radius (something like a million optical photons are 

emitted per flash), yet the process is sufficiently non-catastrophic tha t a 

single bubble may continue to undergo collapse and emission 20,000 times 

a second for many minutes, if not months. Many curious properties have 

been observed, such as sensitivity to small impurities, strong tempera ture 

dependence, necessity of small amounts of noble gases, possible strong iso­

tope effect, etc. [34]. 

No convincing theoretical explanation of the light-emission process has 

yet been put forward. This is certainly not for want of interesting the­

oretical ideas. One of the most intriguing suggestions was advocated by 

Schwinger [35, 36], based on a reanalysis of the Casimir effect. Specifically, 

he proposed tha t the Casimir effect be generalized to the spherical volume 

defined by the bubble (as we will discuss in Chapter 5), and with the static 

boundary conditions replaced by time-varying ones. He called this idea 

the dynamical Casimir effect. Unfortunately, although Schwinger began 

the general reformulation of the static problem in Refs. [103, 104] [most of 

which had been, unbeknownst to him, given earlier [16] (see Chapter 5), he 

did not live to complete the program. Instead, he proposed a rather naive 

approximation of subtract ing the zero-point energy \ J2 hu> of the medium 

from tha t of the vacuum, leading, for a spherical bubble of radius a in a 

medium with index of refraction n, to a Casimir energy proportional to the 

volume of the bubble: 

Ana3 f (dk) 1 / 1 \ ,, An. 

Of course, this is quartically divergent. If one puts in a suitable ultraviolet 



Radiative Corrections 15 

cutoff, one can indeed obtain the needed 10 MeV per flash. On the other 
hand, one might have serious reservations about the physical meaning of 
such a divergent result. 

In Chapter 5 we will carefully study the basis for this model for sono-
luminescence. We will argue there that the leading term (1.40) is to be 
removed by subtracting the contribution the formalism would give if either 
medium filled all space. Doing so still leaves us with a cubically divergent 
Casimir energy; but we will argue further that this cubic divergence can 
plausibly be removed as a contribution to the surface energy. The remain­
ing finite energy has been determined by a number of authors [39, 40, 41, 
42] to be positive and small: 

E<~2Ji^r- i-'K1- i1-41* 

is at least ten orders of magnitude too small, and of the wrong sign, to be 
relevant to sonoluminescence. This result is also equivalent to the finite van 
der Waals self-interaction of a spherical bubble [38], as shown in Sec. 5.9. 

It remains to be confirmed whether this adiabatic approximation is valid 
in the extreme situation present in the sonoluminescing environment. A 
dynamical calculation is called for, and first steps toward that theory will 
be sketched. That, and a discussion of the contradictory literature on this 
evolving subject, will be detailed in Chapter 12. 

1.7 Radiative Corrections 

All of the effects so far described are at the one-loop quantum level. Two-
loop effects have been considered by a few authors [105, 106, 107]. Results 
have been given both for parallel conducting plates and a conducting spher­
ical shell, and will be described in Chapter 13. These effects are certainly 
negligible in QED—the typical correction is down not merely by a factor 
of the fine structure constant a, but by the ratio of the (small) Compton 
wavelength Ac of the electron to the geometrical size a of the macroscopic 
system. However, such corrections could be important in hadronic systems, 
where as ~ 1 and Ac ~ a; but there the relevant calculations have not been 
done. For the status of this important topic, see Chapter 13. 
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1.8 O t h e r Topics 

The above summary does not do justice to all the work carried out over 

many years on the theory and applications of quantum vacuum energy. 

Many of these topics will come up in the appropriate places in the text. 

For example, the Casimir effect could be relevant to the physics of cosmic 

strings, and a brief discussion of some of the li terature on this subject will 

appear in Chapters 7 and 11. The Casimir energy of a closed string itself 

will be discussed in Appendix B. 

1.9 C o n c l u s i o n 

It is the aim of this monograph to provide a unified, yet comprehensive, 

t rea tment of the Casimir effect in a wide variety of domains. Although from 

textbooks one might conclude tha t the Casimir effect is an esoteric subject 

with little practical consequence, I hope this introduction has convinced 

the reader of the pervasive nature of the zero-point fluctuation phenomena. 

These phenomena lie at the very heart of quantum mechanics, and, as 

noted above, what we discuss here are just the first quantum corrections to 

classical configurations. The subtleties and difficulties encountered in all 

but the simplest of the Casimir effect calculations demonstrate tha t we are 

only beginning to understand the quantum nature of the universe. 

1.10 Genera l R e f e r e n c e s 

Mathematical references used freely throughout this book include Whit-

taker and Watson [108], Gradshteyn and Rhyzik [109], Prudnikov, Brychkov, 

and Marichev [110], and Abramowitz and Stegun [ i l l ] . 

Finally, reference should be made to review articles on the Casimir 

effect and its applications, by Plunien, Miiller, and Greiner [112] and by 

Mostepanenko and Trunov [113]. The latter authors have also writ ten a 

book-length review of the subject [114]. Marginally related are books by 

Levin and Micha [115] and by Krech [116]. An excellent book is tha t of 

Milonni [117], but the orientation of tha t treatise is quite different. 

After completion of this manuscript, a long review article has appeared 

by Bordag, Mohideen, and Mostepanenko [118], which is quite complemen-
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tary to the present volume, being in the end primarily concerned with the 
experimental situation. 





Chapter 2 

Casimir Force Between Parallel Plates 

2.1 Introduction 

It is often stated that zero-point energy in quantum field theory is not 
observable, and for this reason the theory should be defined by normal 
ordering. That such a conclusion is incorrect was recognized by Casimir in 
1948 when he showed that zero-point fluctuations in electromagnetic fields 
gave rise to an attractive force between parallel, perfectly conducting plates 
[l]. His result, at zero temperature, for the force per unit area between such 
plates separated by a distance a is 

__fhc_ 
• A e m " 240a 4 ' [ ] 

Experiments have confirmed this Casimir Effect. Our aim in this chapter is 
to rederive Casimir's result using careful Green's function techniques which 
should lay to rest any uneasiness concerning control of infinities in the prob­
lem. The formalism developed here will be applied in subsequent chapters 
to derive Casimir forces in more complicated geometries and topologies, and 
make application to fundamental physics issues from hadrons to cosmology. 

In this chapter, we will first, in Sec. 2.2, provide a simple, unphysical, 
derivation of the Casimir effect between two idealized plates using dimen­
sional regularization. The Green's function approach in the case of a scalar 
field satisfying Dirichlet boundary conditions will then be given in Sec. 
2.3. Here we calculate the force on one of the plates by looking both at 
the normal-normal component of the stress tensor, and by computing the 
Casimir energy. In Sec. 2.4 we consider a massive scalar field. The nonzero 
temperature Casimir effect is examined in Sec. 2.5, with specific attention 

19 
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to the high- and low-temperature limits. The full electromagnetic case is 
treated at last in Sec. 2.6, where we introduce a Green's dyadic formula­
tion. The work of the chapter is concluded with Sec. 2.7, where the Casimir 
force on parallel surfaces due to fluctuations in a massless fermionic field 
satisfying bag-model boundary conditions is treated. 

The Casimir effect evolved out of the earlier work, published the same 
year, 1948, by Casimir and Polder, who considered the retarded dispersive 
forces between polarizable atoms, the constituents of dielectric media [50]. 
(As mentioned, this result was verified by a cavity calculation involving 
zero-point energy [51].) In particular, Casimir and later, and more explic­
itly, Lifshitz recognized that the "Casimir" forces between bodies having 
different dielectric constants can be interpreted, in the limit of tenuous me­
dia, to arise from the retarded (1/r7) and the short-range (1/r6) van der 
Waals potentials between the molecules which make up the bodies, and that 
these van der Waals forces are a result of quantum fluctuations. We will 
discuss these questions and their experimental consequences in Chapter 3. 

2.2 Dimensional Regular izat ion 

We begin by presenting a simple, "modern," derivation of the Casimir ef­
fect in its original context, the electromagnetic force between parallel, un­
charged, perfectly conducting plates. No attempt at rigor will be given, 
for the same formulae will be derived by a consistent Green's function tech­
nique in the following section. Nevertheless, the procedure illustrated here 
correctly produces the finite, observable force starting from a divergent for­
mal expression, without any explicit subtractions, and is therefore of great 
utility in practice. 

For simplicity we consider a massless scalar field <j> confined between 
two parallel plates separated by a distance a. (See Fig. 2.1.) Assume that 
the field satisfies Dirichlet boundary conditions on the plates, that is 

(f>(z = 0) = 4>{z = a) = 0. (2.2) 

The Casimir force between the plates results from the zero-point energy 
per unit transverse area 
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Z = 0 

Fig. 2.1 Geometry of parallel, infinitesimal plates. 

where we have set h = c = 1, and introduced normal modes labeled by the 

positive integer n and the transverse momentum k. 

To evaluate (2.3) we employ dimensional regularization. Tha t is, we 

let the transverse dimension be d, which we will subsequently t reat as a 

continuous, complex variable. I t is also convenient to employ the Schwinger 

proper-time representation for the square root: 

l r , f ddk [°° dt dt , /2e-t(k
2+n27r2/a2) 1 

rH)' 
(2.4) 

where we have used the Euler representation for the gamma function. We 

next carry out the Gaussian integration over k: 

1__L_V f * 
4 ^ (4?r)d/ 

dt , /2-d/2 -tn2TT2/a2 

(2.5) 

Finally, we again use the Euler representation, and carry out the sum over 

n by use of the definition of the Riemann zeta function: 

e = - i i r\d+1y( 
V^(47r)d/2 W V 

ir\d+1 / d+V 
4 ^ ( 4 ^ / n a ) r ( — ^ ) C ( - d - l ) . (2.6) 

When <i is an odd integer, this expression is indeterminate, but we can use 
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the reflection property 

r (§) C(^~z/2 = r ( ~ ) C(i - z)^~l)'2 (2.7) 

to rewrite (2.6) as 

£ = - o . + 2 i / 2 + 1 ^ i r f 1 + ^ C(2 + d). (2.8) 2^+2^/2+1 a d+ l ^ 2 , 

We note that analytic continuation in d is involved here: (2.5) is only valid 
if Red < — 1 and the subsequent definition of the zeta function is only valid 
if Red < —2. In the physical applications, d is a positive integer. 

We evaluate this general result (2.8) at d = 2. This gives for the energy 
per unit area in the transverse direction 

•K2 1 
(2.9) 1440 a 3 ' 

where we have recalled that £(4) = 7r4/90. The force per unit area between 
the plates is obtained by taking the negative derivative of u with respect 
to a: 

The above result (2.10) represents the Casimir force due to a scalar field. 
It is tempting (and, in this case, is correct) to suppose that to obtain the 
force due to electromagnetic field fluctuations between parallel conducting 
plates, we simply multiply by a factor of 2 to account for the two polariza­
tion states of the photon. Doing so reproduces the classic result of Casimir 
(2.1): 

ill 
240 a4 f e m = - ^ - J . (2.H) 
• • / i l l _ < ± 

A correct derivation of this result will be given in Sec. 2.6. 

2.3 Scalar Green's Function 

We now rederive the result of Sec. 2.2 by a physical and rigorous Green's 
function approach. The equation of motion of a massless scalar field <f> 
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produced by a source K is 

-d24> = K, (2.12) 

from which we deduce the equation satisfied by the corresponding Green's 
function 

-d2G(x,x')=5(x-x'). (2.13) 

For the geometry shown in Fig. 2.1, we introduce a reduced Green's function 
g(z, z') according to the Fourier transformation 

G(x,x>) = j£Le*<*-*')J*±e-M*-t>)g{ZtZ>)t (2.14) 

where we have suppressed the dependence of g on k and u>, and have allowed 
z on the right hand side to represent the coordinate perpendicular to the 
plates. The reduced Green's function satisfies 

(~|^-A 2)s(*. *') = *(*-A (2.15) 

where A2 = oj2~k2. Equation (2.15) is to be solved subject to the boundary 
conditions (2.2), or 

g(0,z')=g(a,z')=0. (2.16) 

We solve (2.15) by the standard discontinuity method. The form of the 
solution is 

*<*.*')={pZT,:.̂  :::r.,:n w AsinAz, 0 < z < z' < a, 
BsinX(z — a), a > z > z' > 0, 

which makes use of the boundary condition on the plates (2.16). According 
to (2.15), g is continuous at z = z', but its derivative has a discontinuity: 

A sin Xz' ~ B sin X(z' - a) = 0, (2.18a) 

^AcosAz' - BAcosA(z' - a) = 1. (2.18b) 

The solution to this system of equations is 

. 1 sin Xiz1 — a) , 
A = —r ^-r '-, 2.19a 

A sinAa 
_, 1 sin Xz' 
B = - T ^ - ^ - , (2.19b) 

A smAa 



24 Casimir Force Between Parallel Plates 

which implies that the reduced Green's function is 

g(z,z') — — ——;—— s i n A ^ sinA(z> — a), (2.20) 
A sm \a 

where z> (z<) is the greater (lesser) of z and z'. 
From knowledge of the Green's function we can calculate the force on 

the bounding surfaces from the energy-momentum or stress tensor. For a 
scalar field, the stress tensor* is 

T^ = d^ducj> + 9llvC, (2.21) 

where the Lagrange density is 

C =-±dx4>dx<j>. (2.22) 

What we require is the vacuum expectation value of T^, which can be 
obtained from the Green's function according to 

W I ) ^ ' ) ) = T G ( I , I ' ) ) (2.23) 
i 

a time-ordered product being understood in the vacuum expectation value. 
By virtue of the boundary condition (2.2) we compute the normal-normal 
component of the stress tensor for a given u> and k (denoted by a lowercase 
letter) on the boundaries to be 

1 i 
(tZz) = 7Tdzdz'9(z,z')\z^z'=o,a = -AcotAa. (2.24) 

We now must integrate on the transverse momentum and the frequency to 
get the force per unit area. The latter integral is best done by performing 
a complex frequency rotation, 

u>^i(, X^i^k2 + (2 = IK. (2.25) 

Thus, the force per unit area is given by 

T = ~ f ^ - j [^KcothKa. (2.26) 
2 J (2n)dJ 2vr V ; 

This integral does not exist. 

"The ambiguity in defining the stress tensor has no effect. We can add to T^v an 
arbitrary multiple of {p^dv — g^yd2)^"2 [119, 120]. But the zz component of this tensor 
on the surface vanishes by virtue of (2.2). Locally, however, there is an effect. See 
Chapter 11. 



Scalar Green's Function 25 

What we do now is regard the right boundary at z = a, for example, 
to be a perfect conductor of infinitesimal thickness, and consider the flux 
of momentum to the right of that surface. To do this, we find the Green's 
function which vanishes at z = a, and has outgoing boundary conditions as 
z —> oo, ~ elkz. A calculation just like that which led to (2.20) yields for 
z, z' > a, 

g(z,z') = jsm\(z<-a)eiX{z>-a). (2.27) 
A 

The corresponding normal-normal component of the stress tensor at z = a 

<tz«>|z=z'=„ = 2-dzdz.g(z, z%=z,=a = - . (2.28) 

So, from the discontinuity in tzz, that is, the difference between (2.24) and 
(2.28), we find the force per unit area on the conducting surface: 

We evaluate this integral using polar coordinates: 

j r = _ ^ % l / «<* d K _^L_^. (2.30) 

Here An is the surface area of a unit sphere in n dimensions, which is most 
easily found by integrating the multiple Gaussian integral 

oo 
2 dnxe~x = W 2 (2.31) 

in polar coordinates. The result is 

2 W 2 

When we substitute this into (2.30) and use the identity 

r(2z) = (27r)-1 /222 z-1 /2r (z) T(z+\) (2-33) 

as well as one of the defining equations for the Riemann zeta function, 

f 
Jo 

dyS~l = r ( s ^ s ) ' (2-34) 
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we find for the force per unit transverse area 

^ = - ( r f + l ) 2 - d - 2 7 T - d / 2 - i r ( l + j j +
C

2
( d + 2 ) . (2.35) 

Evidently, (2.35) is the negative derivative of the Casimir energy (2.8) with 
respect to the separation between the plates: 

T=-fa, (2.36) 

this result has now been obtained by a completely well-defined approach. 
The force per unit area, (2.35), is plotted in Fig. 1.2, where a —> 2a and 
d = D-l. 

We can also derive the same result by computing the energy from the 
energy-momentum tensor*. The relevant component is* 

Too = ^{d0ct>d04> + dlcj)d14> + d24>d2cj) + d3<f>d3<f>), (2.37) 

so when the vacuum expectation value is taken, we find from (2.20) 

1 
iX 

• A2 cos Xz cos X(z — a)] 

(too) = r r_[(a-' + k2) s m Azsin X(z — a) 
2iXsmXa 

ru2cosXa-k2cosX(2z-a)}. (2.38) 
2iAsin Ai 

We now must integrate this over z to find the energy per area between the 
plates. Integration of the second term in (2.38) gives a constant, indepen­
dent of a, which will not contribute to the force. The first term gives 

pa 2 
/ dz(t00) = - ^ c o t A a . (2.39) 

Jo 2iA 

As above, we now integrate over UJ and k, after we perform the complex 
frequency rotation. We obtain 

a [ ddk f d( C2 , 
£ = — / T—-7 / — — coth«a. (2.40) 

2 J (27r)d J 2TT K y ' 

^Again, the ambiguity in the stress tensor is without effect, because the extra term here 
is V2<^>2, which upon integration over space becomes a vanishing surface integral. 

•t-As noted after (1.22), we would get the same integrated energy if we dropped the second, 
Lagrangian, term in Too there, that is, used Too = dQ<j>do<f>. 
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If we introduce polar coordinates so that ( = K cos 0, we see that this differs 
from (2.26) by the factor of a(cos2 8). Here 

2 f f l _ / 0 * c o s 2 « s i n w « i _ 1 

^smd~1 0d9 ~J+V <«»' 0) = - ^ - I Z T ^ T - = 7 T T . (2-41) 

which uses the integral 

f\md-1ede= f\\-x2fd-2V2dx = 2d-lT-^-. (2.42) 
Jo J-i r (a) 

Thus, we again recover (2.8). 
For the sake of completeness, we note that it is also possible to use the 

eigenfunction expansion for the reduced Green's function. That expansion 
is 

z 2 g ^{n,Z/a)sHn,J/a)_ 
a '—' n2ir2 a2 — X2 

n=l ' 

When we insert this into the stress tensor we encounter 

n o / /M 2 ^ n27r2/a2 .„ ,„, 
d z d 2 , 5 z , z' U=«'=o,a = - V 2 2'—rj . 2.44 

a ^—' n2ir2 a2 — X2 

n=l ' 

We subtract and add A2 to the numerator of this divergent sum, and omit 
the divergent part, which is simply a constant in A. As we will discuss more 
fully later, such terms correspond to 5 functions in space and time (contact 
terms), and should be omitted, since we are considering the limit as the 
space-time points coincide. We evaluate the resulting finite sum by use of 
the following expression for the cotangent: 

1 2 z ~ i 
cot THE = — + — > -5 p j . (2.45) 

TTX IT ^ — ' X* — K2 

fc=l 

So in place of (2.24) we obtain 

{tzz) = ^x(cotXa-~Y (2.46) 

which agrees with (2.24) apart from an additional contact term. 
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In passing, we note that in the case of periodic boundary conditions, 
(2.43) is replaced by 

-| °° f,in2tr{z~z')/a 

g(z,z') = - V TT rV2 r j , (2.47) 
n= — oo x ' ' 

so we see immediately that 

Fp(a) = FD(a/2), (2.48) 

for the forces referring to periodic and Dirichlet boundary conditions. The 
corresponding energies are related by 

SP{a) = 2£D{a/2). (2.49) 

See Ref. [82]. 
Yet another method was proposed by Schwinger in Ref. [103], based on 

the proper-time representation of the effective action, 

2 L.+0 s 
W=-- - e - " w , (2.50) 

see Ref. [121]. He used it there in attempting to construct the Casimir 
energy of a dielectric sphere, which we shall discuss in Chapter 5, but 
it may be easily applied to the calculation of the Casimir effect between 
parallel plates^see Refs. [122, 123, 124, 125, 126]. 

Bordag, Hennig, and Robaschik [127] consider the Casimir effect be­
tween plates described by (5-function potentials. If g is the strength of the 
potential, as ag —> oo we recover the Casimir energy for Dirichlet plates, 
(2.9). 

2.4 Massive Scalar 

It is easy to modify the discussion of Sec. 2.3 to include a mass JJ, for the 
scalar field. The reduced Green's function now satisfies the equation 

(-^-2-\
2^g(z,z') = 8(z-zi), (2.51) 

where 

A2 = J1 - k2 - M
2, (2.52) 



Massive Scalar 29 

Fig. 2.2 Scalar Casimir force per unit area, JF, between parallel plates as a function of 
mass for d = 2. 

instead of (2.15), so the reduced Green's function between the plates has 
just the form (2.20). The calculation proceeds just as in Sec. 2.3, and we 
find, in place of (2.30) 

T 
Ad+i 

' {2it)d+l nd dn- V ^ 
a2ay /K2+/x2 _ ^ 

(2.53) 

When we substitute the value of Ad+i given by (2.32), and introduce a 
dimensionless integration variable, we find for the force per unit area 

T 
1 

2 2 ( d + l ) 7 r ( d + l ) / 2 r ( d ± l ) ad+2 J2fM 
dxx2± - '- . (2.54) 

For d = 2 this function is plotted in Fig. 2.2. Ambj0rn and Wolfram 
[82] considered the case of massive fields in D dimensions, which had been 
first treated by Hays in the two-dimensional case [128]. They expressed 
the result in terms of the corresponding energy, which can be presented in 
alternative forms (there is a misprint in (2.18) of Ref. [82] for the first form 
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here) 

£ - — I [°° r]ftd]n (\ _P-V*2+M2a2 \ 
t - ad+i 2d+i7r(< J+i)/2r (d±i) y0

 d " M 1 e v j 

/ u a \ d / 2 + 1 1 v-> 1 
= ~2 ( f c ) ^5+T £ ^ T I ^ / 2 + i ( ^ H , (2.55b) 

a d+ l 2 d+l 7 r (d+l ) /2 r ( d± i ) 

(2.55a) 
d/2+l 

n=l 

where the last form is a rapidly convergent sum of modified Bessel functions. 
Because the Casimir energy a massive scalar field between parallel plates 

vanishes exponentially as the mass goes to infinity, we anticipate that the 
Casimir energy, nonrelativistically, is zero. One can see this directly using 
a simple zeta-function regularization technique. Write w = p2/2/j,, and 
evaluate the corresponding zero-point energy by writing (s —> 1) 

ddk / , , 
2 + 

1 ^ 1 ^ f ddk / , 

1 T(l/2 + s + d/2)gi + 2s + d) 
2d+27r(i+d)/2 / ia<i+2S r ( _ s ) ' ^ - 0 D ^ 

[see (2.4)]. Notice that this reduces to 1/2/i times (2.8) for s = 1/2. Evi­
dently, the s —> 1 limit vanishes for all d > — 2. 

2.5 Finite Temperature 

We next turn to a consideration of the Casimir effect at nonzero tempera­
ture. In this case, fluctuations arise not only from quantum mechanics but 
from thermal effects. In fact, as we will shortly see, the high-temperature 
limit is a purely classical phenomenon. Finite temperature effects were first 
discussed by Lifshitz [7], but then considered more fully by Fierz, Sauer, 
and Mehra [129, 3, 4]. (Fierz's early calculation referred only to the energy, 
and not the free energy or force.) Hargreaves [10] analyzed the discrepancy 
between the results of Lifshitz [7] and Sauer [3], which turned out to be the 
result of transcription errors in the former paper [130]. An excellent treat­
ment of the parallel plate problem using the stress-tensor approach and the 
method of images was given by Brown and Maclay [100], for both zero and 
finite temperatures. A multiple-scattering formulation was presented by 
Balian and Duplantier [131, 14]. 
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Formally, we can easily obtain the expression for the Casimir force be­
tween parallel plates at nonzero temperature. In (2.29) we replace the 
imaginary frequency by 

C^Cn=2J, (2.57) 

where (3 = 1/kT, T being the absolute temperature. Correspondingly, the 
frequency integral is replaced by a sum on the integer n: 

J_00 2rr ^ /3 ^ 
J °° ^ n=-oc 

Thus, (2.29) is replaced by 

(2.58) 

^ ~ 2(3J (2TT)d ^ e 2 ^ " - ! ' ( 2 - 5 9 ) 

where «„ = y/k2 + {2tm/ fi)2. 
We first consider the high-temperature limit. When T —> oo (/? —> 0), 

apart from exponentially small corrections (considered in Sec. 3.2), the 
contribution comes from the n = 0 term in the sum in (2.59). That integral 
is easily worked out in polar coordinates using (2.32) and (2.34). The result 
is 

^^-kTW^aWT{-2-)Cid+1)- (2-60) 

In particular, for two and three dimensions, d = 1 and d = 2, respectively, 

d = 1 : jrT-oo _ _ k T * (2.61a) 

d = 2 : ^ T ^ ° ° ~ - j f e T - ^ i . (2.61b) 
87raJ 

Note that if we apply the same procedure to the energy expression (2.40) we 
find that the energy vanishes in the high temperature limit, because Co = 0. 
Accordingly, the entropy approaches a constant. This is as expected from 
thermodynamics, as discussed by Ref. [132]. 

This high-temperature limit should be classical. Indeed, we can de­
rive this same result from the classical limit of statistical mechanics. The 
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Helmholtz free energy for massless bosons is 

F = -kTlnZ, lnZ = - ^ l n ( l -Ppi\ (2.62) 

from which the pressure on the plates can be obtained by differentiation: 

P=-
dF_ 
W' (2.63) 

We make the momentum-space sum explicit for our d + 1 spatial geometry: 

f jdh. °° 
F = kTV - — I - £ M l " *M-MV+nH*/a?)). (2.64) 

J \ > n=-oo 

Now, for high temperature, /? —* 0, we expand the exponential, and keep 
the first order term in f3. We can write the result as 

2a ds J (27r)rf ^ T l a 2 
3=0 

where we have used the identity 

ds 

(2.65) 

(2.66) 

This trick allows us to proceed as in Sec. 2.2. After the k integration is 
done, the s derivative acts only on l/T(—s): 

d 1 

dsT(-s) 

so we easily find the result from (2.7) 

-1, 
s=0 

F = -V, w«d + i)r(±±* 
(2aV^F)d+ lSV ' V 2 

(2.67) 

(2.68) 

The pressure, the force per unit area on the plates, is obtained by applying 
the following differential operator to the free energy: 

-w=-*iL> (2-69) 
where V — Aa^ A being the d-dimensional area of the plates. The result of 
this operation coincides with (2.60). 

The low-temperature limit (T —> 0 or /3 —> oo) is more complicated 
because J^ is not analytic at T = 0. The most convenient way to proceed 
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is to resum the series in (2.59) by means of the Poisson sum formula, which 
says that if c(a) is the Fourier transform of b(x), 

c(a) = — f b{x)e~iax dx, (2.70) 
2̂ " 7-oc 

then the following identity holds: 

oo oo 

Y^ b{n) = 2n ] T c(27rn). (2.71) 
n= — oo n= — oo 

Here, we take 

Introducing polar coordinates for k, changing from k to the dimensionless 
integration variable z = 2a,Kx, and interchanging the order of x and z 
integration, we find for the Fourier transform** 

Ad f°° dzz* f^4™ (2 f^ax\2\(d~2)'2 

c(ot) — nn , •, . , , , / / dx cos arc \ z — \ ——— 
v J 22dnd+iad+i j o ez _! j o y \ P J ) 

(2.73) 
The x integral in (2.73) is easily expressed in terms of a Bessel function: It 
is 

^ ^ ['du cos ( ^ u ] ( l - u ^ ^ 
Ana J0 V4 7 r a / 

U - ^ - W ^ V ' V5FF ( J ) J(,_1)/a ( ̂ 1 ) . (2.74) av (?rnv(£) 
We thus encounter the z integral 

r°° dzz^+V/2 

7 ( s ) = / z 1 J(d-i)/2(sz), (2 .75) 

where s — a/3/iira. 
The zero-temperature limit comes entirely from a = 0: 

^ = ° = -^c(0) . (2.76) 

§ It is obvious that d = 2 is an especially simple case. The calculation then is described 
in Sec. 3.2. 
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So we require the small-x behavior of the Bessel function, 

J(d-i)/2(x) ~ ( 2 ) ^ r y , x^O, (2.77) 

whence 

/ w - y ^ ^ - r ( 2 + l ) c ( d + 2 ) ' s ^ ° - (2-78) 

Inserting this into (2.73) we immediately recover the zero-temperature re­
sult (2.35). 

We now seek the leading correction to this. We rewrite I(s) as 

T( ^ 1 f°° dyy{d+3)/2 -v/s j , , 
J ( s ) = ^T5j75 J0 1 _ e-y/s e y/ J(d-D/2(y) 

= -^m dyy{d+3)/2e-v/sEe-ny/SJ^)M (2-79) 

where we have employed the geometric series. The Bessel-function integral 
has an elementary form: 

is the fundamental integral, and the form we want can be written as 

provided p is a nonnegative integer. (For the application here, this means 
d is odd, but we will be able to analytically continue the final result to 
arbitrary d.) Then we can write I(s) in terms of the series 

Joo= J+5)/2 £/(*). * = »+!. (2-82) 
1=1 

where 
( d - l ) / 2 

/(0 d//s; M^ (2.83) 
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We evaluate the sum in (2.82) by means of the Euler-Maclaurin summation 
formula, which has the following formal expression: 

0 0 /"OO -I 

£ / ( 0 = / dlf(l) + -[/(<x>)+/(!)] 

00 

Here, 5 „ represents the nth Bernoulli number. Since we are considering 
a ^ 0 (the a = 0 term was dealt with in the previous paragraph), the 
low-temperature limit corresponds to the limit s —> 00. It is easy then to 
see that /(oo) and all its derivatives there vanish. The function / at 1 has 
the general form 

/ ( i )=(£) V P + T — • e = i / ^ 0 - (2'85) 

By examining the various possibilities for odd d, d = 1, d = 3, d = 5, and 
so on, we find the result 

/ ( I ) = _(_l ) (d-D/2 d ! ! = _(_1)(<*-l)/22(d+l)/27r-l/2 r ^ + l V (2.86) 

Because it is easily seen that before the limit e —> 0 is taken, / ( l ) is an 
even function of e, it follows that the odd derivatives of / evaluated at 1 
that appear in (2.84) vanish. Finally, the integral in (2.84) is that of a total 
derivative: 

Thus, the final expression for I(s) is 

^ - ^ S ^ ^ - ^ r ^ + l ) . (2.88) 

Note that a choice of analytic continuation has been made so as to avoid 
oscillatory behavior in d. 

We return to (2.73). It may be written as 

<a) = rW2)2*w+iQ( V (jr) ^ r ^ 7 {-£) 
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d+l d 0-d-i-d/2-i (4ira\ 1 _ 1 

The correction to the zero-temperature result (2.35) is obtained from 

2TT ~ 

(2.89) 

T, •T^O 

P 
$ > ( 2 7 r n ) 
7 1 = 1 

- d / 2 - 1 r ( d / 2 + l)C(d + 2)/T (2.90) 

Thus, the force per unit area in the low-temperature limit has the form 

T •T ->0 (d+l)2-d-2TT-d>2-1 

,d+2 
T(d/2 + l)C(d + 2) 1 + 

2 a \ 

d+l \~JJ 
d+2' 

of which the d=\ and d = 2 cases are familiar 

1 
d = l : 

d = 2 : 

87ra3 

r2 7T" 

480a4 

C(3) 

1 + 
16 a4 

T/?4 

(2.91) 

(2.92a) 

(2.92b) 

These equations are incomplete in tha t they omit exponentially small terms; 

for example, in the last square bracket, we should add the term 

240 a -w/3/a (2.93) 

We will discuss such corrections in Sec. 3.2. 

Mitter and Robaschik [133] considered the Casimir effect between two 

plates where the temperature between the plates T is different from the 

external temperature T". If T' < T the difference in thermal pressure can 

balance the Casimir at tract ion. 

2.6 E l e c t r o m a g n e t i c Cas imir Force 

We now turn to the situation originally t reated by Casimir: the force be­

tween parallel conducting plates due to quantum fluctuations in the electro­

magnetic field. An elegant procedure,^ which can be applied to much more 

^ One advantage of this scheme is its explicit gauge invariance, as contrasted with meth­
ods making use of the Green's functions for the potentials. 
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complicated geometries, involves the introduction of the Green's dyadic, de­
fined as the response function between the (classical) electromagnetic field 
and the polarization source [ll]: 

In the following we will use the Fourier transform of T in frequency: 

T(x, x') = J ^ e - M ' - O r ( r , r'; w), (2.95) 

which satisfies the Maxwell equations 

V x T = iu>*, (2.96a) 

- V x # - i w r = i w l J ( r - r ' ) . (2.96b) 

The second Green's dyadic appearing here is solenoidal, 

V • * = 0, (2.96c) 

as is r if a multiple of a 5 function is subtracted: 

' V • I" = 0, I" = T + l<5(r - r ') . (2.96d) 

The system of first-order equations (2.96a), (2.96b) can be easily converted 
to second-order form: 

(V2 + u2)T' = - V x (V x l)<J(r - r ') , (2.97a) 

( V 2 + w 2 ) * = icoV x U ( r - r ' ) . (2.97b) 

The system of equations (2.97a), (2.97b) is quite general. We specialize 
to the case of parallel plates by introducing the transverse Fourier trans­
form: 

/

d2k , 

_ _ e i k ( r x - r J g ( Z ; 2 , ; k ; W ) _ ( 2 9 8 ) 

The equations satisfied by the various Cartesian components of T may be 
easily worked out once it is recognized that 

[V x (V x l)}ij = didj - Sijd2. (2.99) 
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In terms of the Fourier transforms, these equations are 

( J b - k2 + w 2 ) 9zz = ~k2S(z - z'), (2.100a) 

(J? ~ ̂  + Uj2) 9zx = ~lkx^z ~ z'}> (2.100b) 
( d2 \ d 
' k2 + u? )gzy = -iky — 5(z - z'), (2.100c) \dz2 ' Jyzy ~ vdz 

d2 

—^ - kz
 +OJ ) gxx ( " ^ + £ ) < 5 ( z _ 2 ' ) ' (2-iood) 

{&2~k2+ "') 9m = (_fc' + S) 6{Z ~ Z']' (2-10°e) 

V0Z5 ~ *2 + ^ ) &* = k*ky6(z ~ z')- (2.100f) 

We solve these equations subject to the boundary condition that the 
transverse components of the electric field vanish on the conducting sur­
faces, that is, 

n x r 'U= 0 ,a = 0, (2.101) 

where n is the normal to the surface. That means any x or y components 
vanish at z = 0 or at z = a. Therefore, gxy is particularly simple. By the 
standard discontinuity method, we immediately find [cf. (2.20)] 

k k 
9xy = 9yx = , X \ (SS), (2.102) 

A Sin ACL 

where 

(ss) = sin Az< sin A(z> — a). (2.103) 

To find gxx we simply subtract a 5 function: 

9XX = 9** ~ S{z - z'). (2.104) 

Then, we again find at once 

'" = £ m ^ ( S S ) ' (2-105a) 
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and similarly 

& = &£<">• (2-105b) 

To determine the boundary condition on gzz, we recall the solenoidal con­
dition on r", (2.96d), which implies that 

d_ 
Yz9zz = 0. (2.106) 

z=0, a 

This then leads straightforwardly to the conclusion 

A sin Xa 

where 

(cc), (2.107) 

(cc) = cosAz< cosA(z> — a). (2.108) 

The remaining components have the property that the functions are dis­
continuous, while, apart from a 5 function, their derivatives are continuous: 

1 x (cs), (2.109a) 
sin Xa 

where 

Similarly, 

9zy = -4~(cs), (2.109b) 
sin Xa 

.coSXzsmX(z'-a) z<z> 
' smXz'cosX(z - a), z > z'. v ; 

1 x -{sc), (2.111a) 

where 

sin Xa 

gyz = -^-{sc), (2.111b) 
sin Xa 

,sinXzcoSX(z'-a) z<z< 
i cosXz'smX(z - a), z > z', v ' 
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which just reflects the symmetry 

r ' ( r , r ' ) = r ' ( r ' , r ) . (2.113) 

The normal-normal component of the electromagnetic stress tensor is 

TZZ = ±(E2 + H2)-(E2 + H2). (2.114) 

The vacuum expectation value is obtained by the replacements 

(E(a;)E(a;')) = ~T(x,x'), (2.115a) 
i 

(H(x)H(z')} = - - A v x T{x,x') x ^ ' . (2.115b) 

In terms of the Fourier transforms, we have 

(tzz) = ^—^ [-(w2 - k2)gzz + (u2 - k2
y)gxx + (w2 - k2

x)gyy 

( d d \ ( d_ d \ 
+ ikyydzgyz dz,gzy)+ikx^dzgxz Qz<gzx J 

+ kxky(gXy+gyX) + —-—(gxx+gyy) . (2.116) 

When the appropriate Green's functions are inserted into the above, enor­
mous simplification occurs on the surface, and we are left with 

(<*z)|z=o,a = tAcotAa, (2.117) 

which indeed is twice the scalar result (2.24), as claimed at the end of 
Sec. 2.2. 

2.6.1 Variations 

The force between a perfectly conducting plate and a perfectly permeable 
one was worked out by Boyer [134] and studied more recently in Refs. [135, 
136]. A repulsive result, — | times that for a scalar field with Dirichlet 
boundary conditions, (2.9), is found at zero temperature. It is extremely 
interesting that this answer differs only by a sign from the fermionic Casimir 
force we will derive in the next section. Kenneth and Nussinov [137] derive 
the Casimir effect between plates which conduct in single, different, direc­
tions. As expected, when the conductivities are parallel, the energy is 1/2 
that for ordinary conductors. 
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Fluctuations in the Casimir stress have been considered by Barton [138]. 
If T is the observation time, then for r 3> a, 

far beyond experimental reach. The stress correlation function was ana­
lyzed by Barton in Ref. [139]. See also Refs. [140, 141, 142]. 

How real is Casimir energy? Just as real as any other form, as demon­
strated by Jaekel and Reynaud [143], who consider the mechanical and 
inertial properties of Casimir energy and conclude that "vacuum fluctua­
tions result in mechanical effects which conform with general principles of 
mechanics." 

Mention should also be made of the Scharnhorst effect, in which light 
speeds greater than the vacuum speed of light are possible in a parallel 
plate capacitor, as an induced consequence of the Casimir effect [144, 145, 
146]. It is interesting that Schwinger in 1990 wrote a manuscript, which may 
never have been submitted to a journal, that claimed, in contradiction with 
the above referenced results, that the effect was nonuniform, dispersive, and 
persisted if only a single plate was present [147]. 

2.7 Fermionic Casimir Force 

We conclude this Chapter with a discussion of the force on parallel surfaces 
due to fluctuations in a massless Dirac fermionic field. For this simple ge­
ometry, the primary distinction between this case and what has gone before 
lies in the boundary conditions. The boundary conditions appropriate to 
the Dirac equation are the so-called bag-model boundary conditions. That 
is, if nM represents an outward normal at a boundary surface, the condition 
on the Dirac field ip there is 

(1 + in • 7)V> = 0. (2.119) 

For the situation of parallel plates at z = 0 and z = a, this means 

(lT«73)V' = 0 (2.120) 

at z = 0 and z = a, respectively. In the following, we will choose a rep­
resentation of the Dirac matrices in which ijs is diagonal, in 2 x 2 block 
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form, 

yhile 

*75 = I I _0j I (2.121.) 

/ = ( » - • ) , (2.121b, 

from which the explicit form of all the other Dirac matrices follow from 
7 = ij0j5cr. 

The effect of fermionic fluctuations was first investigated by Johnson 
[87], and quoted in Ref. [86]. (The bag model and its boundary conditions 
were introduced in [84].) 

2.7.1 Summing Modes 

It is easiest, but not rigorous, to sum modes as in Sec. 2.2. We introduce a 
Fourier transform in time and the transverse spatial directions, 

*(*) = / ^ V ™ / ^ e * k - * l K z ; k , a , ) l (2.122) 

so that the Dirac equation for a massless fermion —ijdip = 0 becomes, in 
the coordinate system in which k lies along the x axis, 

-uTi— J u± ±kv± = 0, (2.123a) 

±ku±+(-u;±i—)v±=0, (2.123b) 

where the subscripts indicate the eigenvalues of 175 and and u and v are 
eigenvectors of <r3 with eigenvalue +1 or — 1, respectively. This system of 
equations is to be solved to the boundary conditions (2.120), or 

u++u-\z=0 = 0, (2.124a) 

v+-v_\z=0 = 0, (2.124b) 

u+-u^\z=a = 0, (2.124c) 

v++v-\z=a = 0. (2.124d) 
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The solution is straightforward. Each component satisfies 

f— + A 2 ^ V = 0, (2.125) 
\dz2 

where X2 = tu2 — k2, so each component is expressed as follows: 

u + + w _ = .AsinAz, (2.126a) 

v+-v- = BsinXz, (2.126b) 

u+—u- = C sm\(z — a), (2.126c) 

v+ + v- = D sin X(z - a). (2.126d) 

Inserting these into the Dirac equation (2.123a) and (2.123b), we find, first, 
a condition on A: 

cosAa = 0, (2.127) 

or 

Aa = ( n + i ) 7 r , (2.128) 

where n is an integer. We then find two independent solutions for the 
coefficients: 

A ^ 0, (2.129a) 

B = 0, (2.129b) 

C = ^ ( - 1 ) " A , (2.129c) 
A 

D = %h-\)nA, (2.129d) 
A 

and 

A = 0, (2.130a) 

B + 0, (2.130b) 

C = ~{-l)nB, (2.130c) 
lA 

D = ^-(-l)nB. (2.130d) 
zX 

Thus, when we compute the zero-point energy, we must sum over odd inte­
gers, noting that there are two modes, and remembering the characteristic 
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minus sign for fermions: Instead of (2.3), the Casimir energy is 

o l y - ^ , / y , . (n + l /2)V» 
2 2 ^ ( 2 ^ ) 2 V f c + a2 

n=0 

i i ^ r dt 
2^TTATT 

V /"°° ^ -3 /2 . - t (n+ l /2 ) 2 7T 2 / a 2 

r " 5 £ 
3 ^ 3 1 „ / 3 \ ^ ( n + l / 2 ) V 

8TT3/2 V 2 , 
V ' 71 = 0 

which is | x 2 times the scalar result (2.9) because C(~3) = — -B4/4 = 1/120. 
(The factor of 2 refers to the two spin modes of the fermion.) 

2.7.2 Green's Function Method 

Again, a more controlled calculation starts from the equation satisfied by 
the Dirac Green's function, 

j-dG(x, x') = S(x - x'), (2.132) 
i 

subject to the boundary condition 

( l + l n - 7 ) G | z = 0 , a = 0 . (2.133) 

We introduce a reduced, Fourier-transformed, Green's function, 

G(x, x') = J g c " M * - 0 J _ g _ e * ( x - x ' ) 5 ( 2 i z/. k> w)> ( 2 . 1 3 4 ) 

which satisfies 

- 7
0 ^ + 7 • k + 73\§A 9(z,z') = 5{z - z'). (2.135) 

Introducing the representation for the gamma matrices given above, we find 
that the components of g corresponding to the +1 or —1 eigenvalues of 175, 

9=(9++ 9+~), (2-136) 
\9-+ 9— J 
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satisfy the coupled set of equations 

-w±<T-k=Fio- 3 ^ ]9±± = 0, (2.137a) 
oz J 

(-iv ± a- • k T io-3^- ) 3±T = T ^ ( z - z')- (2.137b) 

We then resolve each of these components into eigenvectors of a3: 

/«4« ,4-2' 9 ± ± = L " „<->! <2138> 
\ v ± ± v±± 

and similarly for g±T. These components satisfy the coupled equations 

-u, T i— j u2± ± fcu±± = 0, (2.139a) 

,(±) ,f_... + ;l\j±) ± k g + ( -w ± i— 1 *4±; = 0, (2.139b) 

( - w =F i ^ - J w ^ ± kvQ = =fiS(z - z'), (2.139c) 

d ^ , ( - ) j . t . , ( - ) w T z— j u\± ± kv±^ = 0, (2.139d) 

±kul£ + (-10 ±i-^-j 4 + T = °. (2.139e) 

±kuQ + (-w ± z— ) ^"T
} = ^i6(z - z'), (2.139f) 

which aside from the inhomogeneous terms are replicas of (2.123a) and 
(2.123b). These equations are to be solved subject to the boundary condi­
tions 

(2.140a) 

(2.140b) 

(2.140c) 

(2.140d) 

(2.140e) 

(2.140f) 

u{±) ~u{±)\ 
u + + "— +\z=a 
U+ + +ML±+|Z=0 

»¥l-*£l\,=a 
1 ^ + t i ^ 

^ + ^ 1 ^ 
fS-^l-o 

= 0, 

= 0, 

= 0, 

= 0, 

= 0, 

= 0, 
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« £ - ^ 1 , - 0 = 0. 

(2.140g) 

(2.140h) 

The solution is straightforward. We find 

1++ 

J++ 

,(+) 

1 

,(-) 

2 cos Aa 
cos X(z + z' — a) + — sin A(z + z' — a) 

A 

,(-)* .(-)* 

2 A cos Aa 
sin A(z + z' — a), 

, (2.141a) 

(2.141b) 

,(+)* L+-
1 

(-)* (-) 

2 cos Aa 
2W 

[e(z — z') cos A(z> — z< — a) 

,(+) 

—— sin A(z> — z< — a) 
A 

4 1 5 = u<Ll = « ^ 
sin A(z> — z< — a), 

2 A cos Aa 

where 

-M-: if z > z', 
if z < z'. 

(2.141c) 

(2.141d) 

(2.142) 

We now insert these Green's functions into the vacuum expectation 
value of the energy-momentum tensor. The latter is 

r"" = \ln°\ (^d'+r-^Aijj + g^C, (2.143) 

£ = -l^ldip. (2.144) 
2 i 

We take the vacuum expectation value by the replacement 

1 
ipip'j -G, (2.145) 

where G is the fermionic Green's function computed above. Because we are 
interested in the limit as x' —> x we can ignore the Lagrangian term in the 
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energy-momentum tensor, leaving us with 

(T33) = ±Tr^d3G(x,x')\x^D 

so for a given frequency and transverse momentum, 

(t33) +33 ' ~ l2^-2
ti<j3^-++9+-)y^z 

i0[u™+u?l-{vy+v£)]\^,. 
2dz 

(2.146) 

(2.147) 

When we insert the solution found above (2.141c), we obtain 

d (+) (t6i) = 2i —Ret£7. 
az T (2.148) 

Carrying out the differentiation and setting z — z' we find instead of (2.24), 

(t33) = UtanAa, (2.149) 

where again we ignore the <5-function term. 
We now follow the same procedure given in Sec. 2.3: The force per unit 

area is 

T 
d2k f dto r d2k r 

J (2TT)2 J 2TT 

d2k f d( 

iXtan \a 

{2nf 
i roo 

2^2 

fd( 
J 2TT 

t anh K,a 

dKK 1 -
•SIKQ. + 1 

(2.150) 

As in (2.26) we omit the 1 in the last square bracket: The same term is 
present in the vacuum stress outside the plates, so cancels out when we 
compute the discontinuity across the plates. We are left with, then, 

T 

But 

167T2 

00 x3-1 dx 
ex + 1 

r2«4 Jo 
dxx 
ex + 1' 

(l-21-°)((s)T(s), 

(2.151) 

(2.152) 
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7TT2 , 

^ / = - 7 7 ^ I > (2-153) 

so here we find 

T„ 
1920a4' 

which is, indeed, | times the scalar force given in (2.10) 



Chapter 3 

Casimir Force Between Parallel 
Dielectrics 

3.1 The Lifshitz Theory 

The formalism given in Sec. 2.6 can be readily extended to dielectric bodies 
[ll]. The starting point is the effective action in the presence of an external 
polarization source P : 

W = f(dx)[P • ( - A - V<f>) + eE • ( - A - V<f>) 

- H . ( V x A ) + i ( # 2 - e £ 2 ) ] , (3.1) 

which, upon variation with respect to H, E, A, and 4>, yields the appro­
priate Maxwell's equations. Thus, because W is stationary with respect 
to these field variations, its response to a change in dielectric constant is 
explicit: 

S€W = f(dx)Se^E2. (3.2) 

Comparison of iSeW with the second iteration of the source term in the 
vacuum persistence amplitude, 

« " " - - + 5 )E P + •••, (3-3) i f{dx)\ 

allows us to identify the effective product of polarization sources, 

iP{x)P{x')\eS = 15e5{x-x'). (3.4) 

49 
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Thus, the numerical value of the action according to (2.94), 

W = \ f(dx)P{x) • E ( i ) - i /\dx)(dx')P{x) • T(x,x') • P(x ' ) , (3.5) 

implies the following change in the action when the dielectric constant is 
varied slightly, 

5W = -l-j(dx)5e(x)Tkk{x,x), (3.6) 

where the repeated indices on the dyadic indicate a trace. In view of (3.2), 
this is equivalent to the vacuum-expectation-value replacement (2.115a). 

For the geometry of parallel dielectric slabs, shown in Fig. 1.1, where 
the dielectric constants in the three regions are 

( £ i , 2 < 0 , 

e(z) =<£3, 0<z<a, (3.7) 
[e2, a< z, 

the components of the Green's dyadics may be expressed in terms of the 
TE (transverse electric or H) modes and the TM (transverse magnetic or 
E) modes,* given by the reduced scalar Green's functions satisfying 

dz2 

did k2 

+ k2-u>2e\gH(z,z') = 6(z-z'), (3.8a) 

where, quite generally, e = e(z), e' = e(z'). The nonzero components of the 
Fourier transform g given by (2.98) are easily found to be (in the coordinate 
system where k lies along the +x axis) 

9 xx 

9yy 

9zz 

9xz 

*We have changed the notation from that of the original reference [l l] . The TE modes 
are denoted by H, the TM modes are denoted by E, to be consistent with the notation 
used later in the book. 

1 , „ 1 9 1 d v —6(z-z') + - — -—gE, 
e e az e dz1 

«29H, 

--J(z-z>) + ^9°, 
k d P 

cc1 nv 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 
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9*x = ~A^19E- (3"9e) 
ee' az' 

The trace required in the change of the action (3.6) is obtained by taking 
the limit z' —> z, and consequently omitting delta functions: 

f > r r K p L U \- U I? 
(3.10) 

This appears in the change of the energy when the second interface is 
displaced by an amount 8a, 

5e(z) = -5a(e2-e3)6(z-a), (3.11) 

namely (A is the transverse area) 

~A = \ I 2^(27r)2dZ Se(z)gkk(z, z;k,w) = -6aF, (3.12) 

where the force per unit area is 

*=i i f du> (dk) . 
2 / ^T7^p(e2-e3)ff/cfe(a,a;k,w). (3.13) 

Because gH, gE and \'§i\f§^9E a r e &H continuous, while ee' is not, we 
interpret the trace of g in (3.12) symmetrically; we let z and z' approach the 
interface from opposite sides, so the term ^gE —» -^—gE. Subsequently, 
we may evaluate the Green's function on a single side of the interface. In 
terms of the notation (for e = 1, K = — iX in the notation used in the 
previous chapter) 

K
2 = k2-u>2e, (3.14) 

which is positive after a complex frequency rotation is performed (it is 
automatically positive for finite temperature), the magnetic (TE) Green's 
function is in the region z,z' > a, 

9»M = ±(e-*~ 

the reflection coefficient is 

«2 - «3 , 

r = — - — + 
«2 + «3 

z ' ' +re~ 

4K,2K3 

K3 ~ K2 

-K2(z+z' — 2a) (3.15) 

(3.16) 
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with the denominator here being 

d = « 3 + * l«3 + « a e t e , . _ L ( 3 1 7 ) 

« 3 - « l K3 - K 2 

The electric (TM) Green's function gE has the same form but with the 
replacement 

K->K/e = K,', (3.18) 

except in the exponentials; the corresponding denominator is denoted by 
d!. [It is easy to see that gH reduces to (2.27) when r = — 1; the results in 
Sec. 2.6 follow from (3.9a)-(3.9e) in the coordinate system adopted here.] 

Evaluating these Green's functions just outside the interface, we find 
for the force on the surface per unit area 

(3.19) 

where the first bracket comes from the TE modes, and the second from the 
TM modes. The first term in each bracket, which does not make reference to 
the separation a between the surfaces, is seen to be a change in the volume 
energy of the system. These terms correspond to the electromagnetic energy 
required to replace medium 2 by medium 3 in the displacement volume. 
They constitute the so-called bulk energy contribution. (It will be discussed 
further in Chapter 12.) The remaining terms are the Casimir force. We 
rewrite the latter by making a complex rotation in the frequency, 

w -> i<, C real, so K2 = k2 + e(2. (3.20) 

This gives for the force per unit area at zero temperature 

^ a = L r = - ^ / o d(jo dk22K3(d^+d>-i). (3.21) 

From this, we can obtain the finite temperature expression immediately by 
the substitution 

C 2 - C = 47rV//32 , (3.22) 
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the prime being a reminder to count the n = 0 term with half weight. 
These results agree with those of Lifshitz et al. [7, 67, 8]. The connection 
between Casimir's ideas of zero-point energy and Lifshitz' theory of retarded 
dispersion forces appears in Boyer's paper [148].t 

Note that the same result (3.21) may be easily rederived by computing 
the normal-normal component of the stress tensor on the surface, Tzz, pro­
vided two constant stresses are removed, terms which would be present if 
either medium filled all space. The difference between these two constant 
stresses, 

T. •vol _ _. / (dk) duJ 

ZZ /^s<*->- <*"> 
precisely corresponds to the deleted volume energy in the previous calcula­
tion. 

3.2 Applications 

Various applications can be made from this general formula (3.21). In 
particular, if we set the intermediate material to be vacuum, €3 = 1, and 
set e\ = €2 = 00, so that ACI = K2 = 00, K[ = K'2 = 0, we recover the Casimir 
force (2.11) between parallel, perfectly conducting plates. More generally, 
we can let the intermediate material have a dispersive permittivity, so that 
we obtain 

-1 />00 / -00 

T = - — r / d( / dK ,2 4K 

- i r v (v/i°3 «™ 
" W o W < " - 1 ~ 24(Via4' (6 } 

which, until the last step, still admits of dispersion. This last expression is 
an obvious generalization of Casimir's result to a dielectric-filled capacitor. 
Note that the corresponding energy per unit area is 

^if^M 1 -^) (3.26) 

TThe nonretarded part of the Lifshitz formula, for i i « J , the "principal absorption 
wavelength of the material," was rederived in 1968 by van Kampen, Nijboer, and Schram 
[149], using the "argument principle" described in Appendix A to evaluate the zero-
point energy. 
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which is a considerably simpler expression than, but equivalent to, that 
given in Ref. [150]. (See their note added in proof.) [Cf. (2.55a).] 

3.2.1 Temperature Dependence for Conducting Plates 

As for the temperature dependence, we note that we must take this limit 
with special care for the static situation u> = 0. In order to enforce correctly 
the electrostatic boundary conditions, we adopt the prescription that we 
take the limit e —> oo before we set to = 0. Doing so for the temperature-
dependent version of (3.21) gives 

F1 = -^E'f*»3=5rr. <**> 
where K\ = k2 + (27rn//3)2, This is exactly twice the scalar result given 
in (2.59) for d = 2. Notice that if we had simply let e\t2 —> oo, the first 
denominator structure in (3.21) for n = 0 would not contribute, which, 
among other consequences, would imply an incorrect T —» 0 limit.* Defining 

y = 2Kna, t = Ana//3, (3.28) 

we find the Casimir force for arbitrary temperature to be 

TT = \ m Y ' \ y2dy—±—. (3.29) 
W « 3 „ t j Jut ev-l K ' 

As noted in the previous chapter, the high-temperature, t ^> 1, limit is 
particularly easy to obtain, for then the n = 0 term is the only one which 
is not exponentially small. Including the first of these exponentially small 
corrections (from n = 1) we find for large T 

•t Remarkably, this seemingly obvious prescription has become controversial. Bostrom 
and Sernelius [151, 152] claim that the n = 0 mode of the TE mode should be omit­
ted. This would give rise to a significant temperature correction in the experimen­
tally accessible region, while none is seen—see below. That this claim is incorrect 
has been demonstrated by Lamoreaux [153]. See also Svetovoy and Lokhanin [154, 
155], who obtain a large linear temperature correction, again in contradiction with ex­
periment. A sensible explanation of the ambiguities which led to these erroneous results 
appears in Bordag et al. [156]. 
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[The term which is not exponentially small is twice tha t given in (2.61b).] 

This coincides with the result first found by Sauer [3] and Mehra [5, 4, 

6]. See also Levin and Rytov [157]. Our form (3.21) is especially suited 

to obtain the high tempera ture limit, in contradistinction to the forms 

obtained by Sauer and Mehra and by Brown and Maclay [100]. 

The low-temperature limit was also worked out in the previous chapter, 

but for a general value of d, the transverse dimension. There are significant 

simplifications when d = 2. We use the Poisson sum formula (2.71) for 

functions related by a Fourier transformation (2.70). Here we take 

b(n) 
poo 

/ ^ 
J\n\t 

dy 
ev -V 

(3.31) 

which has the Fourier transform for a ^ 0 

c(a) 
/"OO /«00 

/ dx cos ax I y2 dy 
Jo Jxt 

•K , 1 
— cotn TTZ 
2 2z 

1 

7T JO 

IT a dz2 

e« - 1 

1 

7ra 
47T' 

z=a/t 

3 e - 2 7 r a / t ( 1 + e - 2 7 r a / i ) f: 

a-
(3.32) 

t\ _ e-2ira/t\3 

Here we have interchanged the order of integration and used the fact tha t 

./o 

dy 

ev 
sin zy • COth TTZ 

1 

2? 
(3.33) 

which may be easily derived from (2.45). The evaluation of c(0) is easily 

accomplished directly, or by expanding coth TTZ in the above, yielding 

c(0) 
7T 

15i" 

We therefore find an alternative form for the sum in (3.29) 

2TT tJ 

" E ' W - ^ + ss- ' - 'E 
l e - 4 7 r 2 n / * ( l + e - 4 7 r 2 n / t ) 

n = 0 n = l 
( 1 - e - i/t\3 

(3.34) 

(3.35) 

which, apar t from a factor, expresses the general temperature dependence 

of the Casimir force. From this form, it is very easy to obtain the low-
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rature limit 

TT ~ * 2 

240a4 
' 16 a4 

.1 + y^-
240 a 

" V ^ e 
ir/3/a /? » 47ra. (3.36) 

again in agreement with Sauer and Mehra [3, 5, 4, 6], and with that found by 
Lifshitz [7, 8] when the transcription error there is corrected. The result is, 
of course, twice that given in (2.92b), including the exponential correction 
(2.93). We recognize the second term here as the blackbody radiation 
pressure arising from thermal fluctuations above the plate, z > a, (external 
fluctuations),§ so we write 

w\,^A d (F 

^ --is^-^U/' (3-3?) 

where the corresponding (internal) free energy per unit area is (£ = akT) 

j = -^m> m = ^+xe+e(i + ^)e-^, *< 1,(3.38) 
where the constant X is undetermined by (3.36). Under the inversion 
symmetry discovered by Ravndal and Tollefsen [158], a generalization of 
that found by Brown and Maclay [100], this low temperature result can be 
extended to the high-temperature limit by the inversion formula 

HO = (204/(l/4£), (3.39) 

so here 

/(^ = ̂ 4 + ̂  + C ( ^ + 0 e 4 7 r e ' C>>1' (3'40) 
The corresponding force is, from (3.37), 

X kT 
: f T ^ - 2 ^ k T - A ^ { t 2 + 2t + 2)e~^ t>>h ( 3 - 4 1 ) 

where t = AirakT. We see that the Stefan's law contribution cancelled be­
tween the interior and exterior modes, and that the first term expresses the 
correct linear behavior shown in (3.30) with X = ((3)/2TT. The exponen­
tially small term in (3.30) is reproduced, which shows the (limited) efficacy 
of this inversion symmetry. 

§See footnote 7 of Ref. [100]. 
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Recently, these results have been rederived by semiclassical orbit theory 
by Schaden and Spruch [159]. 

3.2.2 Finite Conductivity 

Another interesting result, important for the recent experiments [71, 72], is 
the correction for an imperfect conductor, where for frequencies above the 
infrared, an adequate representation for the dielectric constant is [99] 

e{u>) = 1 - - f , (3.42) 

where the plasma frequency is^ 

4-ire2N 

where e and m are the charge and mass of the electron, and N is the number 
density of free electrons in the conductor. A simple calculation shows, at 
zero temperature [10, l l ] , 

T-
7T2 

"240a4 

8 1 / / j \ i / 2 

V^ea ViV 
(3.44) 

If we define a penetration parameter, or skin depth, by 5 = l/wp, we can 
write the result out to second order as [160, 114] 

TT2 / 16 5 52\ , x 

^^-24b^( 1 -ya+ 2 4^J- ^ 

Recently, Lambrecht, Jaekel, and Reynaud [161] analyzed the Casimir 
force between mirrors with arbitrary frequency-dependent reflectivity, and 
found that it is always smaller than that between perfect reflectors. 

3.2.3 van der Waals Forces 

Now suppose the central slab consists of a tenuous medium and the sur­
rounding medium is vacuum, so that the dielectric constant in the slab 

'Although we have used rationalized Heaviside-Lorentz units in our electromagnetic ac­
tion formalism, that is without effect, in that the one-loop Casimir effect is independent 
of electromagnetic units. For considerations where the electric charge and polarizability 
appear, it seems more convenient to use unrationalized Gaussian units. 
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differs only slightly from unity, 

e - l < l . (3.46) 

Then, with a simple change of variable, 

« = CP, (3.47) 

we can recast the Lifshitz formula (3.21) into the form 

F * - ^ r ^ C C 3 r % e ( C ) - l ] W - l ) 2 + l ] e - 2 ^ . (3.48) 

If the separation of the surfaces is large compared to the characteristic 
wavelength characterizing e, a(c 3> 1, we can disregard the frequency de­
pendence of the dielectric constant, and we find 

^ 6407r2a4 ' [6^> 

For short distances, a(c <S 1, the approximation is 

1 1 r°° 

These formulas are identical with the well-known forces found for the com­
plementary geometry in Ref. [ll]. 

Now we wish to obtain these results from the sum of van der Waals 
forces, derivable from a potential of the form 

V = - — . (3.51) 

We do this by computing the energy (M = density of molecules) 

(3.52) 
If we disregard the infinite self-interaction terms (analogous to dropping 
the volume energy terms in the Casimir calculation), we get [ll , 38] 

dE_ 2*BN2 1 
da A (2-7)(3-7)a-v-3' l ' ; 
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So then, upon comparison with (3.49), we set 7 = 7 and in terms of the 
polarizability, 

we find 

23 
B = - a \ (3.55) 

or, equivalently, we recover the retarded dispersion potential of Casimir and 
Polder [50], 

23 a2 , 

whereas for short distances we recover from (3.50) the London potential 
[49], 

V = — - / d(a(0\ (3.57) 

which are the quantitative forms of (1.6) and (1.9), given in (1.30) and 
(1.29), respectively. 

3.2.4 Force between Polarizable Molecule and a Dielectric 
Plate 

As a final application of these ideas, we will calculate the energy of inter­
action between a molecule of polarizability <x(u>) and a dielectric slab. This 
energy is given by (3.6) with 

5e(r, u>) = 4na(u))6(r - R), (3.58) 

which expresses the change in the dielectric constant when a molecule is 
inserted in the vacuum at R. We will suppose that the dielectric slab 
occupies the region of space z < 0 with vacuum above it. The appropriate 
Green's functions here, referring to a single interface, are trivially obtained 
from those discussed in Sec. 3.1. In region 2, gH has the form of (3.15) with 
the reflection coefficient r given by 

2K 
l + r = — — , 3.59 

K + K\ 
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where 

eiu}2, (3.60) 

which is obtained from (3.16) by taking the limits a —> oo, €2 = 1, £3 = e\. 
The energy is then (R3 = z) 

i / 
dui (dk) 
2^(2TT) 2 4,Tra(uj)gkk(z,z;'k,io), (3.61) 

where, from (3.10), 

9kk " V + ( 
CO2 1 

K 2K 

*2+J^>E 

u2K~Kl+(2k2 

K + Ki 

z'->z 

2 C i K - K i 
- a T ) 

-2/cz (3.62) 

The necessary contact term here is easily deduced from the physical require­
ment that the energy of interaction go to zero as the separation gets large, 
z —> co, which effectively removes the LU2/K term in gkk- Therefore, the 
interaction energy between the molecule and the dielectric slab separated 
by a distance z is 

1 f°° f°° 1 

o K> — / ^ l 
-C"^— - + (2k2 + C) 

K + K\ 

2 . e\K — K\ 

E\K + Ki 

— 2KZ (3.63) 

One application of this result refers to the attraction of a molecule by 
a perfectly conducting plate. We merely take E\ —> 00 and then easily find 

E--
3a 

' 87T24 ' 
(3.64) 

a result first calculated by Casimir and Polder [50]. This result was exper­
imentally verified by Sukenik, Boshier, Cho, Sandoghar, and Hinds [162]. 
(Actually, they measured the force on an atom between two plates, the 
general theory of which was given by Barton [163].) A second, particu­
larly interesting possibility occurs when the molecule is of the same type as 
those composing the dielectric slab. When the common dielectric constant 
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is close to unity, the energy of interaction, to lowest order in e — 1, is 

where we have expressed the polarizability of the molecule in terms of 
the dielectric constant according to (3.54). Lifshitz et al. [7, 8, 9] have 
considered the limiting behavior of large separations (small () where e can 
be considered to be constant. 

A recent proposal by Ford and Svaiter [164] suggests focusing the vac­
uum modes of a quantized field by a parabolic mirror, thereby enhanc­
ing the Casimir-Polder force on an atom, which would be drawn into the 
focus of the mirror. The approach used in that paper is a semiclassi-
cal approximation, based on geometrical optics. It is related to the cal­
culations of Schaden and Spruch [165, 166] who used a semiclassical ap­
proximation and geometrical optics to calculate Casimir energies between 
pairs of conductors, plates, a plate and a sphere, spheres, and concen­
tric spheres, in the approximation that the separations of the objects are 
small compared to all radii of the objects. They also provide a rigorous 
derivation of the proximity theorem result of Derjaguin [167, 168, 54, 55, 
56], which is discussed in the next section. 

3.3 Experimental Verification of the Casimir Effect 

Attempts to measure the Casimir effect between solid bodies date back to 
the middle 1950s. The early measurements were, not surprisingly, some­
what inconclusive [55, 57, 58, 59, 60, 61, 62, 63, 64, 65]. The Lifshitz 
theory (3.21), for zero temperature, was, however, confirmed accurately in 
the experiment of Sabisky and Anderson in 1973 [66]. So there could be no 
serious doubt of the reality of zero-point fluctuation forces. For a review of 
the earlier experiments, see Ref. [169]. 

New technological developments allowed for dramatic improvements in 
experimental techniques in recent years, and thereby permitted nearly di­
rect confirmation of the Casimir force between parallel conductors. First, in 
1996 Lamoreaux used a electromechanical system based on a torsion pen­
dulum to measure the force between a conducting plate and a sphere [68, 
69]. The force per unit area is, of course, no longer given by (1-12) or (1.13), 
but may be obtained from that result by the proximity force theorem [170] 
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which here says that the attractive force F between a sphere of radius R 
and a flat surface is simply the circumference of the sphere times the energy 
per unit area for parallel plates, or, from (1.12), 

F = 2,RS(d) = -^l% R»d, (3.66) 

where d is the distance between the plate and the sphere at the point of 
closest approach, and R is the radius of curvature of the sphere at that 
point. The proof of (3.66) is quite simple. If R 3> d, each element of the 
sphere may be regarded as parallel to the plane, so the potential energy of 
the sphere is 

V(d)= 2-n:Rsm9Rd6£(d + R(l-cos0))=2irR dx£(d + R-x). 
J0 J-R 

(3.67) 
To obtain the force between the sphere and the plate, we differentiate with 
respect to d: 

dV fR d 
F = -—- = 2irR / dx — £(d + R-x) 

ad J_R ox 

= 2itR[£{d) - £(d + 2R)} « 2irR£(d), d < R, (3.68) 

provided that £ (a) falls off with a. This result was already given in Refs. [54, 
55, 57]. The proximity theorem itself dates back to a paper by Derjaguin 
in 1934 [167, 168]. 

Lamoreaux in 1997 [68, 69] claimed an agreement with this theoreti­
cal value at the 5% level, although it seems that finite conductivity was 
not included correctly, nor were roughness corrections incorporated [171]. 
Further, Lambrecht and Reynaud [172] analyzed the effect of conductivity 
and found discrepancies with Lamoreaux [70], and therefore stated that it 
is too early to claim agreement between theory and experiment. See also 
Refs. [173, 174]. 

An improved experimental measurement was reported in 1998 by Mo-
hideen and Roy [71], based on the use of an atomic force microscope. They 
included finite conductivity, roughness, and temperature corrections, al­
though the latter remains beyond experimental reach." Spectacular agree­
ment with theory at the 1% level was attained. Improvements were subse­
quently reported [72, 73]. (The nontrivial effects of corrugations in the sur-

I! The low temperature correction for the force between a perfectly conducting sphere and 
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face were examined in Ref. [175].) Erdeth [74] used template-stripped sur­
faces, and measured the Casimir forces with similar devices at separations 
of 20-100 nm. Rather complete analyses of the roughness, conductivity, and 
temperature correction to this experment have now been published [176, 
156, 177]. 

Very recently, a new measurement of the Casimir force (3.66) has been 
announced by a group at Bell Labs [75], using a micromachined torsional 
device, by which they measure the attraction between a polysilicon plate 
and a spherical metallic surface. Both surfaces are plated with a 200 nm 
film of gold. The authors include finite conductivity [172, 178] and sur­
face roughness corrections [179, 180], and obtain agreement with theory at 
better than 0.5% at the smallest separations of about 75 nm. However, 
potential corrections of greater than 1% exist, so that limits the level of 
verification of the theory. Their experiment suggests novel nanoelectrome-
chanical applications. 

The recent intense experimental activity is very encouraging to the de­
velopment of the field. Coming years, therefore, promise ever increasing 
experimental input into a field that has been dominated by theory for five 
decades. 

a perfectly conducting plate is [156, 68, 69] 

360 d3 

360C(3) 
1 + Y-^Td)-* -16(Td) 3 i c / T , n 4 (3.69) 

For the closest separations yet measured, d ~ 100 nm, this correction is only ~ 10~5 at 
room temperature. 





Chapter 4 

Casimir Effect with Perfect Spherical 
Boundaries 

4.1 Electromagnetic Casimir Self-Stress on a Spherical Shell 

The zero-point fluctuations due to parallel plates, either conducting or in­
sulating, give rise to an attractive force, which seems intuitively under­
standable in view of the close connection with the attractive van der Waals 
interactions. However, one's intuition fails when more complicated geome­
tries are considered. 

In 1956 Casimir proposed that the zero-point force could be the Poincare 
stress stabilizing a semiclassical model of an electron [12]. For definiteness, 
take a naive model of an electron as a perfectly conducting shell of radius 
a carrying a total charge e. The Coulomb repulsion must be balanced by 
some attractive force; Casimir proposed that that could be provided by the 
vacuum fluctuation energy, so that the effective energy of the configuration 
would be 

E = he, 4.1 
2a a 

where the Casimir energy is characterized by a pure number Z. The would 
open the way for a semiclassical calculation of the fine-structure constant, 
for stability results if E = 0 or 

e2 

a = — = 2Z. (4.2) 
he 

Unfortunately as Tim Boyer was to discover a decade later after a heroic 
calculation [13], the Casimir force in this case is repulsive, Z = —0.04618. 
The sign results from delicate cancellations between interior and exterior 
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modes, and between TE and TM modes, so it appears impossible to predict 
the sign a priori. 

Boyer's calculation was rather complicated, involving finding the zeroes 
of Bessel functions. Boyer's expression was subsequently evaluated with 
greater precision by Davies [76]. In the late 1970s two independent calcu­
lations appeared confirming this surprising result. Balian and Duplantier 
[14] used a multiple scattering formalism to obtain a quite tractable form 
for the Casimir energy for both zero and finite temperature, while Mil­
ton, DeRaad, and Schwinger [15] exploited the Green's function technique 
earlier developed for the parallel plate geometry. We will describe the lat­
ter approach here. In particular the Green's dyadic formalism of Sec. 2.6 
may be used, except now the modes must be described by vector spherical 
harmonics, denned by [99, 181, 182, 183, 184] 

Xlm = [l(l + l)]-V2LYlm{6,<l>), (4.3) 

where L is the orbital angular momentum operator, 

L = - r x V. (4.4) 
i 

Notice that we may take I > 1, because spherically symmetric solutions to 
Maxwell's equations do not exist for w / 0 . The vector spherical harmonics 
satisfy the orthonormality condition 

/ • 
^ x i v ' x k = l 5 « " i — ' . (4-5) 

as well as the sum rule 

V - , V ,o ^12 2l + 1 

^ | X l m ( M ) | 2 = - ^ - . (4-6) 
m= — I 

The divergenceless dyadics T' and <J> may be expanded in terms of vector 
spherical harmonics as 

r ' = 5Z (flXlm + ~Vx 9l*lm) , (4.7a) 
lm ^ ^ ' 

$ = £ UXi™ - - V x fiXlm) , (4.7b) 
lm ^ U ' 

where the second suppressed tensor index is carried by the coefficient func­
tions fi, gi, fi, m-
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Inserting this expansion into the first-order equations (2.96a), (2.96b), 
and using the properties of the vector spherical harmonics, we straightfor­
wardly find [15] that the Green's dyadic may be expressed in terms of two 
scalar Green's functions, the electric and the magnetic: 

T(r,r';w) = ^ ^ ( r . r O X ^ X ^ f i ' ) 
lm 

- V x [GKr,r')X,m(fi)Xrm(fi')] x V} 

+ 5-function terms, (4-8) 

where the expression "5-function terms" refers to terms proportional to 
spatial delta functions. These terms may be omitted, as we are interested 
in the limit in which the two spatial points approach coincidence. These 
scalar Green's functions satisfy the differential equation 

subject to the boundary conditions that they be finite at the origin (the 
center of the sphere), which picks out the spherical Bessel function of the 
first kind, ji, there, and correspond to outgoing spherical waves at infinity,* 
which selects out the spherical Hankel function of the first kind, h\ '. On 
the surface of the sphere, we must have 

= 0, (4.10) 
r=a 

so that F is the TE (H), and G is the TM (E), Green's function. The result 
is that 

{£}-<*+{?;}. <«u 
where G° is the vacuum Green's function (k = |w|), 

G°(r,r') = ikjtikr^h^ikr^, (4.12) 

"The terminology refers to the associated Helmholtz equation, so the behavior at spatial 
infinity is elkr/r. The time dependence is e~iwt, where k = \io\. Thus, in field-theoretic 
terms, we are using the usual causal or Feynman Green's function. 

F;(a,r') = 0, g^rG^r') 
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and in the interior and the exterior of the sphere respectively, 

r,r' <a: { j=| } = -AG^Fikji{kr)Ji{kr'), (4.13a) 

r,r' >a: j *?' j = -BGiFikh[l){kr)h{p(kr1), (4.13b) 

where the coefficients are 

^ = ^ = W ' (4-14a) 

A G = SG = f, ' ,1 J , 4.14b 

the prime signifying differentiation with respect to the argument ka. From 
the electromagnetic energy density we may derive the following formula for 
the energy of the system 

E— I (Jr\— I m < = - ^ ( * - t ' ) 
to* 

oo I 
X E E {fc2[^(^^) + G,(r,r ')]X,m(fi) .Xrm(fi ') 

i = l m— — l 

- V x X /m(fi) • [F ;(r,r') + G^r')] • X?m(fi') x ^ ' } 

(4.15) 

Note here that the vacuum term in the Green's functions has been removed, 
since that corresponds to the zero-point energy that would be present in this 
formalism if no bounding surface were present. Here we are putting the two 
spatial points coincident, while we leave a temporal separation, r = t — t\ 
which is only to be set equal to zero at the end of the calculation, and 
therefore serves as a kind of regulator. The integration over the solid angle 
and the sum on m may be easily carried out, with the result 

E = ±T(2l + l) / ^e~™T / r2dr[2k2[Fl+Gl}(r,r) 
i=i 

1 d f d , 
r \ v 

r2 dr [ dr1 F ; ( r , r ' ) + G K r , r ' ) \ . (4.16) 
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The integral of the derivative term here is equal to zero, which can be seen 
by explicit calculation. The radial integral over Bessel functions is simply 
done using recurrence relations. (For further details, see Chapter 5.) The 
result is, in Minkowski spacetime, with z = ka, and hi(z) = h\ {z), 

2aJti J 2n l ZJl (ZJlY zhl (zhi) ) 
(4.17) 

Now it may be verified that the integrand in (4.17) has the following 
analytic properties in the complex variable ( = k: 

• The singularities lie in the lower half plane or on the real axis.* 
Consequently, the integration contour C in u> lies just above the 
real axis for w > 0, and just below the real axis for u> < 0. 

• For ImC > 0, the integrand goes to zero as 1/|C|2- (This is a weaker 
condition than specified in Ref. [15].) This convergent behavior is 
the result of including both interior and exterior contributions. 

Then we may write the energy of the sphere as 

E= f %-^g(\u\), (4.18) 
JC 27T 

where the integrand satisfies the dispersion relation 

g(\u\) = - ^ d( C g(C), (4.19) 
ni J_00 C - ^ ~ ie 

because the singularities of g(() occur only for Im C < 0. Now we can carry 
out the u> integral in (4.18) to obtain 

E 
1 f°° t 

- s Ldw'K""g{°- (i20) 

Finally, we rewrite the result in Euclidean space by making the Euclidean 
transformation i|r| —> |r4| > 0, so that we have the representation 

1 I"00 rib. oikiTi 
1

 e-ICI|r4 ' ' d k i e 

2|C| L^wre- (421) 

t If a large external sphere is added, as Hagen [185] advocates, the singularities arising 
from modes in the annulus become real. This is because there is then no energy radiated 
to infinity. However, this has no effect on the stress on the inner sphere [186]. 
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Thus the Euclidean transform of the energy is 

/

OO J I 

-^eik^g{i\k4\). (4.22) 

In effect, then, the Euclidean transformation is given by the recipe o> —> ik^, 
\u/\ —> i|A;41, T —> 1x4. In particular, the energy (4.17) is transformed into 
the expression 

EE = -±£{21 + 1)± T dyet*x(& + £ + & + £) 
2iraf^ 2 , /_ 0 0 \st s[ e, e[ J 

where 

A, = [a,(a:)ej(x)]' (4.24) 

is written in terms of Ricatti-Bessel functions of imaginary argument, 

ei(x) = \f^-Kl+1/2(x). (4.25) 

In the above we have used the value of the Wronskian, 

W(eh si) = e,(x)s{(a;) - s^e'^x) = 1. (4.26) 

Here, as a result of the Euclidean rotation, 

1 I T 
x = \y\, y = -ka \s real, as is S = — > 0. (4-27) 

The same formula may be derived by computing the stress on the surface 
through use of the stress tensor [15], the force per unit area being given by 
the discontinuity 

T = T 
r=a — l_d_ 

r=a+ ~ 4 ™ 2 9a 
E, (4.28) 

E being given by (4.17), or by (4.23) after the Euclidean rotation. 
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A very rapidly convergent evaluation of this formula can be achieved by 
using the uniform asymptotic expansions for the Bessel functions: 

si(x) 

ei(x) 

1 z1'2 

2( l + z2)1/4 l 

z1/2 _ 
( l + z 2 ) l / 4 e 

aVTi 

fc=i 
oo 

fc=l 

(-!)*«*(*) 

(4.29a) 

oo, (4.29b) 

where 

x = vz, v = 1 + 1/2, t = (l+z2)-1/2, r] = t-1+\n Z _ i ; (4.30) 

and the Uk{t) are polynomials in t of definite parity and of order 3fc [ i l l ] , 
the first few of which are 

M*) = ^ (3* -5* 3 ) , 

u2{t) 
1 

-(81£2-462i4 + 285i6), 

(4.31a) 

(4.31b) 
1152 

Mt) = 7T^^(30375< 3 -369603t 5 + 765765t7-425425^), (4.31c 
414720 ' v 

u^) = o n o l o 1 o n (4465125^ 4 - 94121676t6 + 349922430£8 

39813120' 
446185740*10 + 185910725i12). 

If we now write 

.. OO 

I=I 

we easily find from the leading approximation, 

( 2 ^ ) 2 l n ( l - A 2 

(1+Z 2 ) 2 1 3 ' 

(4.31d) 

(4.32) 

(4.33) 

that 

^ , 0 ) ~ — , J->oo. (4.34) 

In order to obtain a finite sum, therefore, we must keep 8^0 until the end 
of the calculation. By adding and subtracting the leading approximation 
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to the logarithm, we can write 

J(l,5) = Rl + Sl(5), 

where 

1 f°° 
Ri = / dz 

2Wo 
(2Z + l ) 2 l n ( l -A z

2 ) + ^ - ¥ = J 

and 

5 , (5)= l r zdzeiSvz ? , 1 

z 2 ) 3 ' 

(4.35) 

^ - 0 ) - ^ , (4.36) 

(4.37) 

By use of the Euler-Maclaurin sum formula (2.84), we can work out the 

sum 
0 0 o 

E 5 ^ ) = -^> (4-38) 
1=1 

precisely the negative of the value of a single term at e = 0!* The sum of the 
remainder, X^ify, is easily evaluated numerically, and changes this result 
by less than 2%. Thus the result for the Casimir energy for a spherical 
conducting shell is found to be 

„ 0.092353 E = ^ — <4-4°) 
This agrees with the result found in 1968 by Boyer [13], evaluated more 
precisely by Davies [76], and confirmed by a completely different method 
by Balian and Duplantier in 1978 [14]. Recently, this result has been re­
confirmed, using a zeta function method, by Leseduarte and Romeo [187, 
188]. Reconsiderations using direct mode summation have also appeared 
[189, 190, 191]. 

It is, of course, possible to derive the result using potentials and ghost 
fields. Unlike in our manifestly gauge-invariant approach, gauge invariance 
must then be verified. See Ref. [192, 193]. 

'This result may be formally obtained by zeta-function regularization: 

0 0 

V V = (2"s -l)C(-s) - 2 " s , s < - l , (4.39) 
1=1 

so if we formally extrapolate to s = 0, the angular momentum sum of unity becomes 
- 1 . 
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Eberlein [194] considered the fluctuations of the force on a sphere. If 
the observation time r is large compared to the radius of the sphere, T ^> a, 

which is two orders of magnitude smaller than for parallel plates, as seen 
in (2.118). 

Bordag, Elizalde, Kirsten, and Leseduarte [195] examined a scalar field 
with mass /J, subject to a spherical boundary. Divergences were encountered, 
which were removed by renormalizing constants in a classical Hamiltonian, 

^classical = pV + aS + Fa + k + - , (4.42) 
a 

where V = 47ra3/3, S = 4ira2. Although this would seem to make it 
impossible to determine the Casimir energy, which is of the form of h/a, 
a renormalization prescription was imposed that only the contributions 
corresponding to JJL —> oo were to removed. Doing so left mass corrections 
which did not decrease exponentially, as they did for parallel plates, as 
discussed in Sec. 2.4. Clearly there are issues here yet to be resolved. The 
completely finite result for a massless scalar will be derived in Chapter 9. 

4.1.1 Temperature Dependence 

Balian and Duplantier [14] also considered the temperature dependence of 
the electromagnetic Casimir effect for a sphere. They computed the free 
energy in both the low and high temperature limits, with the results 

^ 0.04618 , xo()fcT)4 , m 

F ~ (nafl—f-, kT^l/a, (4.43a) 
kT 1 

i r ~ - T ( l n f c T a + 0 . 7 6 9 ) - 3 8 4 0 f c T a 2 , kT» 1/a. (4.43b) 

In view of the relation between the force and the energy [which follows from 
applying the substitution (2.58) on the zero-temperature expression (4.28) 
for the force] the corresponding expressions for the energy are 

ET = - „ ^ - F f0.04618/a + 7r3a3(fcT)4/5, fcTa«l, 
da \ fcT/4-l/(1920fcTo2), kTa > 1. l ' 

Note that, unlike the situation for parallel plates, discussed after (2.61b), 
ET does not vanish in the T -> oo limit. See Ref. [132, 196, 197]. 
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We sketch the derivation of these results in the leading uniform asymp­
totic approximation, where the approximation (4.33) holds. Then we may 
write the approximation for the energy at finite temperature as a double 
sum:§ 

„ 5 oo oo 2 5 

E ^ - V V — (4 45) 
(27ra)6 ^ ^ [n2 + (/3^/27ra)2]4' K ' 

As j3 —» 0 we can approximate the sum over I by an integral, 

3 J ^ r°° x$ 

P ^ Jo ("2 ^ "^4 
n = l 

oo 

( n 2 + z 2 ) 4 

= 4 £»° = ->) = ?• (4'46) 
where in the last step we adopted a zeta-function evaluation. Alternatively, 
we could keep the e

l2*naS/P point-splitting factor in the n sum, which then 
evaluates as 

fy—sl0 = -\-kcoiir> (4-47) 
1=1 p 

the real part of which is correctly —1/2. 
For low temperature, j3 ^> a, we instead replace the sum on n in (4.45) 

by an integral, 

o ° ° /-oo 2 

9.7m. ^ L 
ei6x 

2 ™ ^ f Jo ~">2 + ̂ )4 

_ ^ L ^ _ZLr6 + 6«Ji/ - 2(5u)3]e-/S 

2na ^ 192l V ; J 

3 
64a' 

(4.48) 

where the I sum may be carried out directly, or as in Ref. [15]. There are 
no power of T corrections in this approximation. 

§This resembles the double-sum representation found by Brown and Maclay for parallel 
plates [100]. 
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To obtain the latter, it is necessary to use the exact expression (4.23), 
which for finite T becomes 

1=1 M n=0 

where 

fn,i=xn—\n(l-Xf(xn)), xn = ——, (4.50) 

where we note that f0,i — 0. We may evaluate this by use of the Euler-
Maclaurin sum formula (2.84). Now the correction to the zero temperature 
result (4.40) comes from the neighborhood of n = 0, where 

±f 
i Jn.l 

- o d" f 
n=0 Un 

-6 (?f) 5ll, (4.51) 

so that 

^ = - ^ ( T ) ' T 1 ' tT«^ <4'52» 

4.2 Fermion Fluctuations 

The corresponding calculation for a massless spin-1/2 particle subject to 
bag model boundary conditions (2.119) on a spherical surface, 

(l + m - 7 ) G = 0, (4.53) 

s 

was carried out by Ken Johnson [198] and by Milton [23]. The result is also 
a repulsive stress, of less than one-half the magnitude of the electromagnetic 
result. (Recall that for parallel plates, the reduction factor was 7/8.) 

In this case we wish to solve the Green's function equation 

-y-dj G(x, x') = 5(x - x') (4.54) 

subject to the boundary condition (4.53). In the same representation for 
the gamma matrices used before in Sec. 2.7, this may be easily achieved in 
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terms of the total angular momentum eigenstates (J = L + (l/2)cr): 

2 / I + 1 / 2 T M V " 
JJM (") - I g T f l I *W-1/2 (")! + ) 

1/2 

T (̂  2 / + x j W i / 2 ( t t ) | - > . (4.55) 

These may be interchanged by the radial spin operator 

~r7l = J±l/2 ryl^JTl/2 ?AC:C\ 
<r-rZJM =ZJM • (4-56) 

These harmonics satisfy the addition theorem, the analog of (4.6) 

£ trZJ/M^{a)zj^(nr = H^±l. (4.57) 
4-7T 

Prom this point, it is straightforward to derive the fermionic Green's func­
tion (the details are given in Ref. [19]). It differs from the free Dirac Green's 
function G(°) by 

G = G<°> + G, (4.58) 

where, using a matrix notation for the two-dimensional spin space spanned 
7J±l/2 
JJM i 

hj+i/2(ka)jj+i/2(ka) - hj_1/2(ka)jj_1/2(ka) 

[jj+i/2{ka)}2 - [jj-i/2(ka)} 

by Z, 

G±zf. lk2_^ [„•.. . , . / i .„M2 _ U , . ,„/-t.„M2 

G±± = - t*x; 

j 

/ =Fiwjj+1/2(fcr)jJ+1/2(fcr') kjJ+1/2(kr)jj_1/2(kr') 

\ -kjj-i/2(kr)jJ+1/2(kr') Tiujj-i/2(kr)jj„1/2(kr') ) ' 

(4.59a) 

l/fc2a2 

[jj+i/2(fca)]2 - [jj-i/2(ka) 

x -ifcwij+i/2(A:r)jj+1/2(fcr') Twjj+i/2(fcr)jj_1/2(fcr-') 
Twjj_i/2(fcr)jij+1/2(A;r') ikjj_i/2(kr)jj_1/2(kr') J ' 

(4.59b) 

Here, as in Sec. 2.7.2, the subscripts denote the eigenvalues of 175. 
Once the Green's function is found, it can be used in the usual way to 

compute the vacuum expectation value of the stress tensor, which in the 
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Dirac case is given by (2.143), which leads directly to (unlike in Sec. 2.7, a 
factor of 2 is included for the charge trace) 

(Trr) = — tr-y-rG(x,x') (4.60) 

The discontinuity of the stress tensor across the surface of the sphere gives 
the energy according to 

d 
4Tra2[(Trr)(a-)-(Trr)(a+)} 

da 
E(a). (4.61) 

A quite straightforward calculation (the details are given in Refs. [19, 23]) 
gives the result for the sum of exterior and exterior modes, again, in terms 
of modified spherical Bessel functions: 

2 °° r°° d 
E= — 52(1 + 1) dxxcosx5 — ln{(ef + ef+1)(sf + sf+1)}. (4.62) 

na i=o Jo x 

The argument of the logarithm may also be written in an alternative form 

(ef + ef+1)(sf + sf+1) = l + Xf, (4.63) 

where 

dx 
, 1 \ x d' 
; J — 

2 / 2dx x 
(4.64) 

This expression may again be numerically evaluated through use of the 
uniform asymptotic approximants, with the result 

0.0204 
E = (4.65) 

Somewhat less precision was obtained because, in this case, the leading 
uniform asymptotic approximation vanished. This result has been verified, 
to perhaps one more significant figure, 

0.02037 
E (4.66) 

by Elizalde, Bordag, and Kirsten [199]. See also Ref. [200]. 





Chapter 5 

The Casimir Effect of a Dielectric 
Ball: The Equivalence of t he Casimir 

Effect and van der Waals Forces 

A natural generalization of the considerations of the previous Chapter is 
to allow the spherical shell to be replaced by a dielectric ball, with permit­
tivity e. The Casimir energy, or self-stress, for such a situation was first 
considered by me in 1980 [16]. This is a rather more subtle situation than 
the situation considered above, because when the speed of light is differ­
ent on the two sides of the boundary, the zero-point energy is not finite. 
However, as we shall see, it is possible to extract an unambiguous finite 
part, at least in the dilute approximation, by regulating the divergences, 
and renormalizing physical parameters. In this Chapter we will consider 
the most general situation, in which a ball of radius a, composed of a ma­
terial having permittivity e' and permeability ^', is embedded in a uniform 
medium having permittivity e and permeability /x. Dispersion is included 
by allowing these electromagnetic parameters to depend on the frequency 
u>. This configuration allows us to apply the results to the situation of sono-
luminescence, for example, where a bubble of air (e' « 1, fi' = 1) is inserted 
into a standing acoustic wave in water (e > 1, /J = 1). This application will 
be discussed in Chapter 12. 

5.1 Green's Dyadic Formulation 

We use the Green's dyadic formulation of Chapter 4, as modified for dielec­
tric materials. In terms of Green's dyadics, Maxwell's equations become 
in a region where e and \i are constant and there are no free charges or 
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currents [cf. (2.96a)-(2.96d)] 

V x T = iw# , V • * = 0, 

- V x * = -itueV , V • T' = 0, (5.1) 
M 

in which T' = T + 1/e, where 1 includes a spatial delta function. The 
two solenoidal Green's dyadics given here satisfy the following second-order 
equations: 

(V2 + L02en)T' = --V x (V x 1), (5.2a) 

(V2 + w2e/i)# = iujfiV x 1. (5.2b) 

These can be expanded in terms of vector spherical harmonics (4.3) as 
follows 

r ' ( r , r ' ) = V f/«(r ,r ' )X I m(n) + — V x 9l(r,v')Xlm(n)] , (5.3a) 
im \ we^ / 

*( r , r') = Y, U(r, r')X«m(fi) - %- V x /,(r, r ')X, r o(fi)) . (5.3b) 

When these are substituted in Maxwell's equations (5.1) we obtain, first, 

9i=9i, fi=fi + ~8(r-r')Xtm(n% (5.4) 

and then the second-order equations 

(D« + w V ) s i ( r > 0 = iu[i I dQ."X*lm{Q.") • V " x 1, (5.5a) 

(A+wV)/i(r,0 = —Jdtf'xun")• v" x (V x i) 

= i A ^ ( r - r ' ) X r m ( n ' ) , (5-5b) 

where the spherical Bessel operator is 

d2
 {2d iji + i)_ 

dr2 r dr r2 

These equations can be solved in terms of Green's functions satisfying 

1 
r 

(Di + w2e/x)F;(r, r') = -^5(r - r1). (5.7) 
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Let us specialize to the case of a sphere of radius a centered on the origin, 
with properties e', fj,' in the interior and e, \i outside. Then the solutions 
to (5.7) have the form 

Fi(ry) = 
ik'ji(fc'r<)[hi(k'r>) - Aji{k'r>)}, r,r'<a, 

where 

ifc/ij(fc»">)[j/(A;r<) - Bhiikr^], 

k = \w\y/jle, k'= \<jj\y/iJ.'e' 

r, r' > a, 
(5.8) 

(5.9) 

and hi = h\ ' is the spherical Hankel function of the first kind. Specifically, 
we have 

Mr,r') = oj^FiryjXUV), 

9l(r,r') = - t w / i V x G,(ry)X;m(n'), 

(5.10a) 

(5.10b) 

where Fi and Gi are Green's functions of the form (5.8) with the constants 
A and B determined by the boundary conditions given below. Given Ft, 
Gi, the fundamental Green's dyadic is given by the generalization of (4.8), 

r ' ( r . r ' ) = W u ; V i ( r y ) X , m ( f i ) X ? m ( f i ' ) 
lm ^ 

- J v x G,(r , r ,)X J m(n)X?m(n ' ) x V 

+ ~6(r - r')Xlm(n)XUn')\. (5.11) 
e r J 

Because of the boundary conditions that 

Ex , eEr, Br, - B i (5.12) 

be continuous at r — a, we find for the constants A and B in the two 
Green's functions in (5.11) 

AF 

BF 

AG 

A, 
/ejj/s^x^s'^x) - ^/7JIsi(x)s'l(x') 

Ai 
/TJle^x^e'^x) - i/e/7e((x)ej(a:') 

(5.13a) 

(5.13b) 

(5.13c) 
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BG 
'HSijx^s'^x) - y^ejl'si(x)s'l(x') 

(5.13d) 

Here we have introduced x = ka, x' = k'a, the Riccati-Bessel functions 

ei(x) = xhi(x), si(x) = xji(x), (5.14) 

and the denominators 

A; = Ve/i'si(x')eJ(x) _ Ve'^'i(x')^i(x)> 

Ai = y/djts^x^e'^x) - y/eyJs[(x')ei(x), (5.15) 

and have denoted differentiation with respect to the argument by a prime. 

5.2 Stress on the Sphere 

We can calculate the stress (force per unit area) on the sphere by computing 
the discontinuity of the radial-radial component of the stress tensor: 

where 

F = (Trr)(a-) - (Trr){a+), 

-[e(El-E?) + rtHl-H? 

(5.16) 

(5.17) 

The vacuum expectation values of the product of field strengths are given di­
rectly by the Green's dyadics computed in Section 5.1; according to (2.115a) 
and (2.115b), 

t ( E ( r ) E ( r ' ) ) = r ( r , r ' ) , 

i{B(r)B(r')> = - ^ V x r ( r , r ' ) x V, 

(5.18a) 

(5.18b) 

where here and in the following we ignore 8 functions because we are in­
terested in the limit as r ' —> r. It is then rather immediate to find for the 
stress on the sphere (the limit t' —-> t is assumed) 

T 
2ia2 J_t 2^' 

- i u i ( t - t ' ) £ 
( = i 

x ( e ' - e ) -a2Ft + 

21 + 1 
An 

1(1 + 1) 1 9 d >\r 
--^r-r——r &i 
e or or' 

r=r' =a~\-
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+ (/*' - M) 

dy 

1(1 + 1) , l._9_ _ # _ , -a2G, + ( ̂ ^ + - ^ r ^ r ' ) F, 
M' r=r '=a+ 

2a4 7_{ 

-iyS 

2a4 / „ 27T" f^ 4TT da: 
" " ( = 1 

E 21 + 1 d 
x— InD;, (5.19) 

where y = u>a, S = (t — t')/a, and, up to a multiplicative constant, 

Di = (~si(x')~e'i{x) - S{(x')e«(*))2 " £2(Si(z')3(*) + S{(:c')e,(aO)2- (5.20) 

Here the parameter £ is 

£ 
^4 + 1 

(5.21) 

This is not yet the answer. We must remove the term which would be 
present if either medium filled all space (the same was done in the case of 
parallel dielectrics: see Chapter 3). [This issue will be discussed more fully 
in Chapter 12.] The corresponding Green's function is given by the first 
term in (5.8) 

i 

The resulting stress is 

r°° duj 

2T 

w = f ifc'j;(A:'r<)/ii(fcV>), r,r' < a 
\ifcj;(fcr<)/i;(fcr>), 

p(0) 

r,r > a 
(5.22) 

pn L f -%U)T 

0 0 o / , i 

Air 

- x&ixYe'^x) - ej(a:)S{'(a:)]|. (5.23) 

The final formula for the stress is obtained by subtracting (5.23) from (5.19): 

2a*J_002ir ^ in \ 
x— InDi 

dx 

+2As[(x')e\{x') - e^x'Y'Hx')] - 2x[s'l(x)e'l(x) - e^s'^x) 

(5.24) 
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where we have now performed a Euclidean rotation, as discussed more fully 
in the previous chapter, 

y —> iy, x —> ix, r = t — t' —> 1(2:4 — x'4) [6 = (2:4 — x'^/a], 

si(x) -> si(x), ei(x)^ei(x), (5.25) 

where the Ricatti-Bessel functions of imaginary argument are given in 
(4.25). 

5.3 Total Energy 

In a similar way we can directly calculate the Casimir energy of the config­
uration, starting from the energy density 

1 

In terms of the Green's dyadic, the total energy is* 

E = f(dr)u 

(5.26) 

— / r2drdn 
1i 

eTVr(r,r) 5-Tr V x T(r , r ' ) x V 
UJ2fl 

(5.27a) 

= L f ^Le-Mt-f)y{2l + 1) [ r 2 d r 

2t J^ 2TT ^ ' J0 

x hk^Ffar) + G^r)} + ~ r f A r ' [ f l + G l ] ( r , r ' ) ) ^ 

(5.27b) 

where there is no explicit appearance of e or fi. (The last expression looks 
just like (4.16) for a conducting shell in vacuum. Here, however, the value 
of k depends on which medium we are in.) As in Ref. [15] and Chapter 4 
we can easily show that the total derivative term integrates to zero. We 
are left with 

E=± ^ e - ^ V ( 2 2 + l) / r2dr2k2[Fl(r,r) + Gl(r,r)]. (5.28) 
2Z J_00 27T ^ J0 

"Here we ignore dispersion. For the stress, it is sufficient to insert e(uj), for example, 
while in the energy one should write -^uje(uS)—see Ref. [99], p. 76. This answers to a 
certain extent the objection of Candelas [201]. 
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However, again we should subtract off that contribution which the formal­
ism would give if either medium filled all space. That means we should 
replace Fi and G\ by 

P C =1 -ik'AF<G3i{k'r)ji(k'r'), r,r' < a 
h l \-ikBF,Ghi(kr)hi(kr'), r,r' > a K' ' 

so then (5.28) says 

E=~Y^(2l + 1)J | ^ e \ / r2drk'3(AF+AG)jf(k'r) 

+ f r2drk3(BF + BG)hf(kr)\. (5.30) 

The radial integrals may be done by using the following indefinite integral 
for any spherical Bessel function ji: 

dxx2j?(x) = I [ ( to , ) ' ) 2 - MxJiY ~ xji(x3i)'\ (5-31) 

But we must remember to add the contribution of the total derivative term 
in (5.27b) which no longer vanishes when the replacement (5.29) is made. 
The result is precisely that expected from the stress (5.24), 

E = 4na^ ^ ~ ( - | ) £ , (5-32) 

where the derivative is the naive one, that is, the cutoff 5 has no effect on 
the derivative. 

It is useful here to make contact with the formalism introduced by 
Schwinger [103, 104]. In terms of an imaginary frequency £ and a parameter 
w, he derived the following simple formula for the energy from the proper-
time formalism 

'27ri0 
d( / dwTrsG, (5.33) 

Jo 

where the trace refers to space, the Green's function is 

G=^TH> <5-34) 
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and the Hamiltonian appropriate to the two modes is (for a nonmagnetic 
material) 

/ TE : d0ed0 - V2 , 
\ TM : d2 - V • (1/C)V. { ' 

Consider the TE part (the TM part is similar, but not explicitly con­
sidered by Schwinger). In terms of Green's function satisfying (5.7), we 
have 

-I /-OO />00 ° ° *>0O 

E = Y dC ^ E ( 2 Z + 1 ) / drr^F^r-ee + w), (5.36) 
•J \J J u i -I J u 

where the third argument of the Green's function reflects the substitution 
in (5.7) of u)2e —> —C2e —w. We now introduce polar coordinates by writing 

£2e + w = p2, d(dw = —=2p2 cos 6 dpd9, (5.37) 

and integrate over 9 from 0 to n/2. The result coincides with the first term 
in (5.28). 

5.4 Fresnel Drag 

As may easily inferred from Pauli's book [202], the nonrelativistic effect 
of material motion of the dielectric, /3(r), is given by the so-called Fresnel 
drag term, 

E' = f(dr)^—-^f3 • (D x H) = f (dr)(ep - l)/3 • (E x H). (5.38) 

To preserve spherical symmetry (of course, this is likely not to be a realistic 
motion) we consider purely radial velocities, 

[3 = /3f. (5.39) 

Then, what we seek is the asymmetrical structure 

f • (E(r) x H(r')) = - r • (H(r') x E(r)) = -^eijkh • <^/c(r',r) 

= wr • 
i 

J2 Ulm(Q') x [V x Giir'^X^iQ)} 
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[ V x F,(r',r)X,m(f2')] x Xjrm(fi)}. (5.40) 

This is easily seen to reduce to 

1 d 
! 
r dr 

r • (E x H) = u,\^rY,Gi(r',r)XlmW) • Xfm(n) 
lm 

-u^r'Y,Fi(r',r)Xlm(n')-XUn), (5.41) 
r' dr' 

lm 
so when Q, and S7' are identified, and the angular integral is carried out, we 
obtain the corresponding energy for a slow, adiabatic, radially symmetric 
motion, 

r°° r°° At °° 
E' = fi r2dr(efi-l) ~u e~^ £(21 + 1) 

JO J~oo llT
 l=l 

x- | - r [G«fo r ' ) - # (*" , / ) r or 
(5.42) 

It is clear, immediately, that if the cutoff r is set equal to zero, this vanishes 
because the integrand is odd in u>; compare to (5.28). Since the sign of r is 
certainly irrelevant, we therefore claim that in this quasistatic approxima­
tion Fresnel drag is absent. 

If we were dealing with statics, of course (E x H) would be zero by time-
reversal invariance. Our argument extends that result to the quasistatic 
regime. Our point in presenting the result (5.42) is that it will make it 
possible to extend the calculation to the dynamical regime, where Fresnel 
drag is nonzero. 

Related is the Abraham value of the field momentum [203, 204], 

G = E x H, (5.43) 

which gives then an extra contribution to the force density, 

f' = ( e - l ) | ( E x H ) . (5.44) 

However, as Brevik noted [204], the expectation value of this is also zero, 
because, in the Fourier transform, successive action of the time derivative 
brings down UJ and —u>. So the continuing controversy about which field 
momentum to use is without consequence here. This should be already 
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obvious, because the energy is well-defined, and we have already seen that 
the force is related to the energy by (5.32). Further implications of the 
results of this section will be given in Sec. 12.3. 

5.5 Electrostriction 

When a dielectric medium is deformed, there is an additional contribution 
to the force density, that of electrostriction [184, 203], 

fES = \V {E2%) ' ^ 
where p is the density of the medium. This term is without effect for 
computation of the force on the dielectric, because it is a total derivative, 
yet here, where we are calculating the stress on the surface, it can be 
significant. The simplest model for describing the density dependence of 
the dielectric constant is that given by the Clausius-Mossotti equation, (for 
example, see [99], p. 58), 

7^ = Kp> (5-46) 

where K is a constant. Consequently the logarithmic derivative appearing 
in (5.45) is 

P^p = \{e-\){e + 2). (5.47) 

The calculation of the electrostrictive Casimir effect for a dielectric ball 
is given by Brevik [204]. We have confirmed his result, and generalized it 
to the situation at hand [37]. Again, the contribution if either medium fills 
all space has been subtracted. The result for the integrated stress on the 
spherical cavity, after the Euclidean transformation is performed, is 

*> = -IS? £< a + 1 > / - . * * ' " ' 
"A ) ( e ' - l ) ( e ' + 2) i?(*'2w*'))' 

x'(AF + A G ) £ d£I?+1/2(0+x'AGJ* ^ i ? + 1 / 2 ( 0 
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+ ( e - l ) ( e + 2) (2 

e \ir 

" B, 

f°° f°° d£ 

x{BF + BG)J dZKf+1/2(Z) + xBGJ -JKt 
2 
1 + 1/2 (0 

(5.48) 

It is rather difficult to extract numerical results from this formula. In­

deed, Brevik [204] considered only two special cases, e S> 1, appropriate to 

a perfect conductor, and |e — 1| -C 1- In fact in the latter case he was able 

to consider only the I = 1 term in the sum. This is highly unreliable, as 

such a term may be completely unrepresentative (such as having the wrong 

sign, as we saw in the previous chapter). Because this electrostrictive stess 

presents divergences tha t are somewhat difficult to understand, we will not 

consider it further here. We will only remark tha t it is highly likely to 

contribute a term comparable to the finite Casimir estimate presented i'n 

Sec. 5.7, and urge tha t efforts be made to extract a value from the above 

formula. 

5.6 D i l u t e D i e l e c t r i c - D i a m a g n e t i c S p h e r e 

We first discuss the special case ^/ql = y/e'/j,', tha t is, when the speed of 

light is the same in both media. Then x = x' and the Casimir energy (5.24), 

(5.32) reduces to 

1 f°° °° J 
E = ~ 4 ^ J „ dy ^ ^2l + l)xte ^ " ̂ (M') 2 ] , (5-49) 

where 

LL — a' e — e' , 
i=-—— = -. 5.50 

If £ = 1 we recover the case of a perfectly conducting spherical shell, t reated 

in Chapter 4 [cf. (4.23)], for which E is finite. In fact (5.49) is finite for all 

The evaluation for small £ was considered first by Brevik and Kolben-

stvedt [205, 206, 207, 208]. They applied only the leading uniform asymp-
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totic approximation for the Bessel functions and obtained 

E~±.e, e«i. (5.5D 

This is just the leading term found in the case of a conducting spherical 
shell, where £ = 1—see (4.38). Much more recently, Klich [209] showed 
how the evaluation may be carried out exactly in this case. The calculation 
hinges upon the identity 

Yt{2l + l)si(x)el(y)Pi(co80) xy _, p = \/x2 + y2 — 2xy cos 9. 
1=0 

(5.52) 
That fact, together with the orthogonality condition for the Legendre poly­
nomials, 

/ : 
dcos9Pi(cos6)Pt,(cos6) 

21 + 1 
8u>, (5.53) 

allows us to perform the sum over Bessel functions occurring in the small-£ 
expansion of (5.49), 

E-taLdyeWS^2l + 1)XTx^e^- ^ 
The sum required is then 

oo 

^r^+iH^M*)]')2 

(=1 

(=0 

1 
2 

2 

/ d cos 6 

Jo t 

d xe~x^2~2cos® 

Ox ^ 2 - 2 cos (9 

(5.55) 

Here we have made the change of variable t — 1x\/1 — 2cos#. Since the 
sum in (5.54) starts at I = 1, we must subtract from (5.55) the I = 0 term, 
constructed from 

SQ(X) = sinha:, eo(x) = e x, 

and then apply the operator x -^: 

OO j -, 

5 3 ( 2 i + 1 ) 1 — [{siet)1]2 = ^e'4x(l + Ax + Ax2 

i=i 

(5.56) 

(5.57) 
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The evaluation of the Casimir energy for this dilute dielectric-diamagnetic 
sphere is now immediate: 

E = TLfdue-u{1 + u + T) 
_ 5? 0-0994718e2 

" 3 2 ^ = Ya ' ^ < < L (5-58) 

It is interesting to note that the Brevik and Kolbenstvedt approximation 
(5.51) is only 6% too low.* It is further remarkable that the value for a 
spherical conducting shell (4.40), for which £ = 1, is only 7% lower, which 
as Klich remarks, is accounted for nearly entirely by the next term in the 
small £ expansion. 

Brevik and Einevoll [212] argue that dispersion should be included, on 
physical grounds. They assume the speed of light is uniform, e(u))fi(u) = 1, 
but assume a dispersion relation 

The Casimir stress found is attractive, but very sensitive to the values of 
/̂ o and wo • In the leading uniform asymptotic approximation they find the 
stress on the sphere to be 

*~^fei)l> (560) 

where, for XQ = oj^a —> oo, 

i=i 
32 

v - T 3 zo /Vo + 1 

If dispersion were neglected, the leading term —3/32 alone would be ob­
tained [see (5.51)]. Brevik and Einevoll point out their results are quali­
tatively similar to those of Candelas [213], although he obtains a constant 
divergent dispersion energy, and therefore no corresponding stress contri­
bution, while they find a dispersive term logarithmically dependent on a, 

t Subsequently, by including two more terms in the uniform asymptotic expansion, Bre­
vik, Nesterenko, and Pirozhenko [210] obtained an approximation to this result accurate 
to about 0.1%. See also Ref. [211]. 
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and the corresponding stress/area having an inverse cube dependence: 

Ed[sP oc u>o In a, J^isp °c w0 (5.62) 

Given the nonuniformity of the limits here, however, it seems fair to con­
clude that the nature of the divergences encountered in this calculation are 
poorly understood, and to maintain that, most likely, only the finite part 
of (5.61) is observable. 

5.6.1 Temperature Dependence 

As Klich et al. have observed [214] it is easy to work out the temperature 
in the leading order in £2. We may simply make the replacement (2.58) in 
the zero temperature expressions for either the energy or the stress. For 
the former, we have from (5.54), with xn = 2irna/f3, 

2 oo oo 

ET = ^E'E^1)^^)']2^) 

2/3 

71=0 1=1 

•2 ° ° 

£'< ' ( l + 4 z n + 4 : r 2 ) 

d 

2/3 V d\ + 4d\2) 
ra=0 

-4x„A (5.63) 
A = l 

Here we have used the evaluation (5.57). Thus the temperature dependence 
of the Casimir energy for a dilute dielectric-diamagnetic ball is exactly that 
given in Ref. [214]: 

,kT 
coth t + + 

t2cotht 

4 [ ' sinh2£ ' 2sinh2 i 
(5.64) 

where t = AirahT, as in (3.28). The high-temperature limit is similar to 
that seen in (3.30): 

kT 
E* ~ ^ _ + ^ e 

2 -87rfcTa kT 
+ 4ira{kTy + 8nzaz(kT) 

while the low-temperature limit 

ET 5 ^ + ? a V ( l t r ) 4 , fcTa«l, 
327ra 45 

kTa » 1, 

(5.65) 

(5.66) 
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resembles (3.36) for parallel plates. These results are very similar to those 
for a conducting sphere, where £ = 1; note that "black-body" term in (5.66) 
differs from that in (4.44) by only a factor of 8/9. The formulas given in 
Sees. 2.5 or 3.2 for the temperature dependence referred to the force/area. 
However, because at zero temperature the stress S is given by 

^ ^ ( 2 Z + l)x — (sieiy
2, (5.67) 

oo l=1
 a x 

the substitution (2.58) may be made for the stress, with the result that 

<ST = — . (5.68) 

At finite temperature, the stress is obtained by differentiating the free en­
ergy, not the energy [see (2.63)], but nevertheless the simple connection 
above holds true. Indeed, after a somewhat elaborate calculation Klich et 
al. [214] find that (5.68) holds with ET given by (5.64). [They seem not to 
have made this simple observation.] 

Brevik and Yousef [215] again consider dispersion, and obtain a log­
arithmically divergent result for the free energy in the high temperature 
limit. Only the a dependent part can be observable, however, so that can 
be interpreted as 

T^oo: F ~ - 5 — - l n a , (5.69) 

which gives a stress of £,2kT/4a, coinciding with the leading term in (5.65). 

5.7 Dilute Dielectric Ball 

The general expression (5.24) is rather opaque. Therefore, we consider a 
dilute dielectric ball, which was already considered in Ref. [16]. (That is, 
we consider /x = 1 everywhere, e = 1 outside of the ball, and |e — 1| -C 1 
inside the ball.) The formula, which still admits of dispersion, corresponds 
in that case to the energy 

1 oo .. »oo , 

E * - g ^ £ ( 2 ' + !)a ]_„ dy^vS«y) ~ l)2xTxFl{x)> (5-70) 

<S = 4 7 r a 2 . F = - — E = 
aa 47ra2 
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inhere 

m)=*u+wm-\(*w 

x2 

4 \dx 
1 ^ 2 I 2 

(5.71) 2{1 + -^-]eiSl~2d^eiSl 

(The same result evidently holds if we consider a dielectric bubble, the 
general dilute effect being proportional to (e — e')2.) The integrand here 
may be approximated by the uniform asymptotic approximation (4.29a), 
(4.29b) [111]: 

e K * M * ) ~ ^ l + ^ + ^ + . . . ) , (5-72) 

where v = I + 1/2, x = vz, and t — (1 + z2)~1/2. The coefficients a,k(t) are 
polynomials in t of degree 3k. If we ignore dispersion, and set the time-
splitting parameter 5 = 0, we obtain [216] the leading uniform asymptotic 
approximation to (5.70), 

( e - l ) 2 ^ ( _ 2 65 927 _4 ^ 
* ~ ^ M * 128 + 1 6 3 8 4 ^ + ^ > j • <5"73> 

The first two terms are formally divergent, but may be evaluated by the 
zeta-function definition (4.39). (That is, we may replace the overall 2/ + 1 
factor in Eq. (5.70) by (21 + l)1-7*, and continue from Re?? > 3 to r\ = 0.) 
Note that if only the leading term were kept, the result given in Ref. [16, 
37] would be obtained, E\ = —(e — l)2/(256a), while including two terms 
reverses the sign and hardly changes the magnitude [216]: Ei = +33(e — 
l)2/(8192a). It is important to recognize that the same finite result is 
achieved if the point-split regularization is retained, as detailed in Ref. [37].* 

*The leading v term is 

( £ ' -^^, ,V 16™ Z ^ 2 / dz (1 + z 2 ) 2 

(=1 J-°° 
(e'-e)2 / 1 6 1 \ (e' - e)2 

64a 
(« + iU_(fL^>l. (5.74) 
\63 AJ 256a V ; 

Here, the last arguable step is made plausible by noting that since S = r/a the divergent 
term represents a contribution to the surface tension on the bubble, which should be 
cancelled by a suitably chosen counter term (contact term). 
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There seems to be no ambiguity in the procedure.§ 
Indeed, let us do the result exactly. We simply add and subtract the two 

leading asymptotic terms from the integrand in (5.70), so that E = E2+ER, 
where the remainder is 

ER= (* ^ > V / dz 
Ana ^ ' 

1=1 

00 „oo 
f4 f10 

Fl(vz)-l- + ^ ( l + 8z2-5zA + ze 

4 8vz 

(5.75) 
According to the third term in (5.73), the z integral here is asymptotic to 
9277r/262144t/4; we evaluate the I sum by doing the integral numerically 
for the first ten terms, and using the asymptotic approximant thereafter. 
The result1 is, as first given in Ref. [39], 

<1M476_7 
a 

(The approximation E2 is 15% too low, whereas if the first three terms in 
(5.73) are kept, the estimate is 1.8% high.) 

This result may be obtained analytically by use of the identity (5.52). 
Here, the calculation is not exactly straightforward [217], so we sketch it 
here. We write the energy expression (5.70) as the sum of three terms, 

E = £ ( 0 ) + £ ( 2 ) + £ ( 4 ) , (5.77) 

where the number in the superscript counts the number of Bessel-function 
products, e/S/, in each term. The first term is just a polynomial in x, so it 
may be absorbed by a contact term; effectively, 

£ ( 0 ) = 0. (5.78) 

The second term is proportional to that encountered in (5.54), so the result 

§As we have seen, zeta function regularization is a simple and effective method of cap­
turing the finite part of the Casimir energy. It yields the same result as isolating the 
divergent part with a physical cutoff, such as the time-splitting parameter <5 7̂  0, and 
removing that term through the process of renormalization. (For more details see, 
for example, Ref. [41].) If we directly evaluate (5.70) as 5 = r/a - • Owe obtain 
E = A 1 / 2 ( a 2 / r 3 ) + J43/2(l/ ' r)- | -E, where, for example, At/2 is exhibited in (5.74), and 
E is given by (5.76), below. 

' i t is interesting that this result is more than two times smaller that the (unambiguously 
finite) result for a ball with the speed of light the same inside and outside, that is, with 
ei/ii = £2M2i as given in (5.58). 
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may be immediately written down from (5.58): 

F(2) ( e - 1 ) 2 5 
16 

The third term is more complicated: 

£<4> = 

= 

( £ - l ) 2 

3277(2 

(e - I ) 2 

2567ra 

0 0 /•oo 

V(2Z + 1) / dx 

/ da: / dtte~~ 
Jo Jo 

32na 

x2(e'/ 

' ( -

s* + 

2 
7 ~ 

aj'ez -

16a:2 

£2 

2e;SJ)2 

32x2 

t3 

(5.79) 

(5.80) 

where we have set the time-splitting parameter equal to zero, integrated by 
parts in x, and used the identity (5.52). (The I = 0 contribution here is 
merely a contact term.) Now let t = 4xu, and integrate first on x, which 
gives the result 

**--*££ J! Hs?*****)- (Bjn) 

This last integral diverges at u = 0; however, if we retain only the evaluation 
at it = 1 we obtain the correct finite result: 

1927TO V ' 

Combining these two parts, we obtain an analytic result coincindent with 
(5.76), 

E ~ 15367T a • ( 5" 8 3 ) 

We will see in Sec. 5.9 that this result may be reproduced from the sum 
of van der Waals interactions. 

5.7.1 Temperature Dependence 

Nesterenko, Lambiase, and Scarpetta [218] use a mode summation tech­
nique to compute the temperature dependence of the Casimir effect for a 
dilute dielectric ball. The result is, for low temperature, 

~ 23 ( e - 1 ) 2 7 , ^ 2 , ^ 3 - 4 

1536 na 90 
(e - l ) 2 (7 ra ) J T 4 + 0(T b ) , (5.84) 
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so from the relation between the energy and the stress, or the derivative 
of the free energy, E = —adF/da, we have the following low temperature 
expansion for the free energy 

J?_ 23 ( e ~ l ) 2
+ J L ( £ _ 1 ) 2 ^ a ) 3 T 4 _ (5.85) 

1536 na 270 * 

They note that the negative sign of the T4 term in the energy (or the 
stress) implies that the temperature correction tends to counteract the zero-
temperature repulsion, unlike the case exemplified in Sec. 5.6.1. 

5.8 Conducting Ball 

In general, the Casimir effect for a dielectric ball is cubically divergent [16], 
as seen in the special case considered in Sec. 5.7. However, there is one case 
in which the divergence is softened, which is when 

(5.86) 

In this limit, the "inside" 

si(x 

e -

i—
l or e —> 

functions become 

• ' ) - V , s\(x') 

oo 

-
1 . 

(5.87a) 

while 

z'(e{s{ - eis'{){x') -> -x'. (5.87b) 

The expression (5.24) for the force per unit area on the surface of a perfectly 
conducting ball therefore becomes 

1 ° ° poo 

xjv'x ^]n(-eiei)(x) - 2[e'l(x)s'l(x) - e^s'/ix)}} , (5.88) 

since the effect of the exponentials (5.87a) is cancelled by the contact term 
(5.87b). Note that, apart from the remaining volume term, this is exactly 
the same as the "outside" part of the expression for the stress on the spher­
ical shell obtained from (4.23). 

Again we approximately evaluate (5.88) by using the uniform asymp­
totic behaviors of the Bessel functions. The drj/dz term cancels between 
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the logarithm term and the volume term, 

ln(-eie{) ~ - —(3t + t3) - 2I/TJ, (5.89a) 

2{e'ls
,
l-el8

,{) ~ _ _ - ( t + t 5 ) + 2 _ i ) (5.89b) 

leaving us with the leading term 

1 ° ° 1 /*oo 

The z integral is 

Jo 

1 1 2 
efecostAZ(5 2 / 2 = -{v5)2K2{i>8) -> - as z/<5 -> 0. (5.91) 

Using the Euler-Maclaurin summation formula (2.84) we find the sum over 
I to bell 

If we include the next-to-leading term in the uniform asymptotic expan­
sion, which is easily seen to be just half the result for the spherical shell 
result (4.38), we obtain the approximate result for the Casimir energy for 
a conducting ball: 

£—i(i-i) + ii' (5-93) 
Again it is plausible that the divergent term is an unobservable quantity: 

it gives rise to an term in the energy proportional to the radius of the 
sphere, and so corresponds to a constant stress. It would not appear if a 
zeta-function regularization were adopted.** If that term in (5.93) were 

II There is an error in Ref. [16]: The derivative term in this evaluation [the third term 
on the first line of (5.92)] was inadvertently omitted so that —1/4 was obtained for the 
result instead of —11/36. 

**Then the leading term becomes 
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simply omitted, we would be left with a constant attractive stress, or a 
negative energy 

E—0-™, (5.95) 
a 

so that it would be possible to resurrect Casimir's electron model (4.2), with 
a predicted value of the fine structure constant only an order of magnitude 
too large. However, as we will see in the next Chapter, it seems impossible 
to obtain a complete evaluation of the Casimir effect in this case, because 
an irreducible divergence still remains. 

5.9 Van der Waals Self-Stress for a Dilute Dielectric Sphere 

Here, our intention is to carry out the same simple calculation, summing 
the van der Waals interactions between the molecules that make up the 
material, that we performed on parallel slabs in Sec. 3.2.3, for a dilute 
dielectric ball. The first two steps are unambiguous, following from (3.51) 
(9 is the angle between r and r', and M is the number density of molecules): 

1 E = -\BM2 j\dv)(dr')] 

r i i i 
.(5.96) 

ATT2BM2 , , , , , 

dr I dr rr' 2 - 7 Jo 

(r2 + r/2 _2rr'cos6>)T/2 

1 

o 
(r _|_ rr\i-2 | r . _ r / | 7 - 2 

Now, however, there are divergences of two types, "volume" (r' —> r) and 
"surface" (r —> a). The former is of a universal character. If we regulate it 
by a naive point separation, r ' —> r + S, S —> 0, we find the most divergent 
part to be 

TTBN"2 1 T, T, 47ra3 

which is identical to the corresponding (omitted) divergent term in the 
parallel dielectric calculation, where V = aA. This is obviously the self-
energy divergence that would be present if the medium filled all space, and 
makes no reference to the interface, and is therefore quite unobservable. 
This is the analogue (although the e dependence is different) of the volume 
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divergence in the Casimir effect, (1.40), which we will discuss more fully in 
Chapter 12. 

If, once again, the divergent terms are simply omitted, as may be weakly 
justified by continuing in the exponent 7 from 7 < 3, we obtain a positive 
energy, 

23 
E v d W = 1 5 3 6 ^ £ - 1 ) 2 - <5"98) 

This may be more rigorously justified by continuing in dimension, a pro­
cedure which has proved useful and illuminating in Casimir calculations 
[32]—See Chapter 9. Thus we replace the previous expression for the en­
ergy by 

E = -)-BM2 IdDrdDr'- l-— (5.99) 
2 J | r - r ' | T v ' 

where, in terms of the last angle in .D-dimensional polar coordinates, 

dDr= * n / drr0-1 d9smD-20. (5.100) 
J r (—5—) Jo Jo 

If we take, say, r ' to lie along the z axis, so that 6 is again the angle between 
r and r', we find 

1 OTr-D/2 o _ ( £ ) - l ) / 2 ra pa 
B--\BM'TmTW)L'h"'S^^1 (5-101) 

f dcos9(l - cos2 9fD-^'2{r2 + r'2 - 2rr'cos9)- •7/2 

The angular integration can be given in terms of an associated Legendre 
function Pg(z), 

[l dt (1 - *2)(D-3)/2(r2 + r,2 _ 2 r r / t ) -7 /2 

= V ^ ( ^ 1 ) {rr'rD'2\r2-r'2\^-2y2Pl;%2 (• 

(5.102) 

Now let us substitute this into the expression for the energy, and change 
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variables from r, r' to 

a: = r 2 + r ' 2 , y= ' ' ' ,. (5.103) 
r2 + r'2 

The x integral is then trivially done, leaving us with 

BM2nD 1 f°° / 2a2 \D~l/2 

E = ~ n n / ^ / n M N n 7^ / dV 2D/2T{D/2)D-1/2Jl *\y + l 

x(y2-ir-2)/iPl;_%2
/2(y), (5-104) 

valid for D > 7/2. Integrals of this type are given in [110]: 

J™ dy (y - l)-"/2(y + l )^ 3 - 1 ^^) = 2tr(l-6ri"a)r(l-6)' ( 5J°5) 

valid for Re a < 1, Re b < 0. Then we have, using the duplication formula 
for the r function (2.33), 

nD-l/22D-yr /£>-7+A 

The resulting formula is regular when D and 7 are both odd integers, so 
we can analytically continue from D > 7 to D = 3 for 7 = 7. Doing so 
gives us, using Eq. (3.55), 

E = BAf2*-1- = 2lii^l, (5.107) 
24 a 24 647ra ' v ' 

exactly the same as the naive result (5.98). This calculation^ was first 
presented in Ref. [38]. 

This precisely agrees with the Casimir result (5.83). The same identity 
between the van der Waals and Casimir forces has now been noted by 
several authors [39, 41, 42], For example, Barton [40] used an elementary 
method of summing zero-point energies directly in powers of (e — 1), using 
ordinary perturbation theory. Of course, the approach given in Sec. 5.7 
is in principle more general, in that it allows for arbitrary e and permits 
inclusion of dispersion. 

t+We offer as evidence for the validity of our methodology the fact that formula (5.106) 
gives the correct Coulomb energy for a uniform ball of charge, for which 7 = 1. 
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5.10 D i s c u s s i o n 

There has recently been considerable controversy concerning the possible 

relevance of the Casimir effect to sonoluminescence [34]. The idea t ha t the 

"dynamical Casimir effect" might be relevant to sonoluminescence orig­

inated in the work of Schwinger [35]. We will discuss these ideas, and 

subsequent work, in detail in a later chapter. However, now tha t we clearly 

see tha t the Casimir energy may be identified with sum of van der Waals 

interactions, it seems perfectly plain tha t the volume effect they consider, 

proportional to e — 1, simply cannot be present, because such cannot arise 

from pairwise interactions. (This point was already made in Ref. [16].) 

Our interpretat ion stands vindicated: an effect proportional to the volume 

represents a contribution to the mass density of the material , and cannot 

give rise to observable effects. 

More subtle is the role of surface divergences [16, 38]. The zeta function 

regularization calculation we presented above simply discards such terms; 

but they appear in more physical regularization schemes. For example, if 

the t ime splitting parameter in (5.24) is retained, we get from the leading 

asymptotic expansion [see (5.74)] 

Ediv- ^ - ^ , (5.108) 

and if a simple model for dispersion is used, with characteristic frequency 

LOO, the same result is obtained with 1/5 —> woa/4 [37]. (A very similar 

result is given in Ref. [216].) We believe these terms are probably also 

unobservable, for they modify the surface tension of the liquid, which, like 

the bulk energy, is already phenomenologically described. (That surface 

tension has its origin in the Casimir effect was proposed in Ref. [ll].) 

We note tha t Bar ton in his perturbat ive work [40] seems to concur with 

our assessment: The terms "proportional to V [the volume] and to S [the 

surface] would be combined with other contributions to the bulk and to 

the surface energies of the material , and play no further role if one uses the 

measured values." However, he seems to give more credence to the physical 

observability of these divergent terms in his most recent analysis [219]. 

It is t ruly remarkable tha t however the (true) divergences in the theory 

are regulated, and subsequently discarded, the finite result is unchanged. 

T h a t is, in the van der Waals energy, we can simply omit the point-split 

divergences, or proceed through dimensional continuation, where no di-
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vergences are explicit; in either case, the same result (5.98) is obtained. 
Likewise, the same result is obtained for the Casimir energy using either 
a temporal point-splitting, or an exponential wavenumber cutoff [40], and 
omitting the divergent terms; or through the formal trick of zeta-function 
regularization [39]. The finite parts are uniquely obtained by quite distinct 
methods [41, 42]. It is worth re-emphasizing that we are not claiming that 
the Casimir effect for a dielectric ball is finite, unlike the classic case of 
a spherical conducting shell described in Sec. 4.1. It is merely that those 
divergent terms serve to renormalize phenomenological parameters in the 
condensed matter system. 





Chapter 6 

Application to Hadronic Physics: 
Zero-Point Energy in the Bag Model 

Quantum chromodynamics (QCD) is nearly universally believed to be the 
underlying theory of hadronic matter. Yet, the theory remains poorly un­
derstood. The phenomenon of color confinement has yet to be derived from 
QCD, but it may be roughly approximated by the phenomenologically suc­
cessful bag model [84, 85, 86, 87, 88, 89, 220]. In this model, the normal 
vacuum is a perfect color magnetic conductor, that is, the color magnetic 
permeability [i is infinite, while the vacuum in the interior of the bag is 
characterized by \i — 1. This implies that the color electric and magnetic 
fields are confined to the interior of the bag, and that they satisfy the 
following boundary conditions on its surface S: 

n - E 0, n x B 0, (6.1) 

where n is a unit normal to S. Now, even in an "empty" bag (i.e., one 
containing no quarks) there will be nonzero fields present because of quan­
tum fluctuations. This gives rise to a zero-point or Casimir energy, as we 
have seen. It would be anticipated that this energy would have the form 
—Z/a, where a is the radius of a (spherical) bag and Z is some pure num­
ber. Indeed, such a term has been put in bag model calculations, and a 
good fit to hadronic masses has been obtained for Z = 1.84 [84, 85, 86, 87, 
220]. However, in principle Z should be computable from the underlying 
dynamics of QCD.* In this Chapter we will calculate Z in the approxima-

*In fact, in Ref. [86], it is noted that "a real calculation of Z is needed, and eventually 
will be provided." Apparently, the authors were unaware of Boyer's calculation [13], 
which suggests Z < 0. 

105 
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tion that the gluons are free inside the bag, which is roughly justified by 
asymptotic freedom. The result is a value of Z that appears quite incom­
patible with the phenomenological value. However, some twenty years after 
these considerations were first published [18, 19] the results still remain not 
clearcut because, as we observed in Chapter 5, when there is a disconti­
nuity in the speed of light, the Casimir energy is not finite. Nevertheless, 
the results of that chapter give us some confidence that unambiguous finite 
observable Casimir energies can be extracted in such a case. 

A related but somewhat different motivation for this work came from 
Johnson's model for the QCD ground-state wavefunction [17]. Effectively, 
he supposed that space was filled with bags, the boundaries of which confine 
color to small, asymptotically-free regions.* He used the classic result for 
the Casimir effect of a conducting spherical shell, as described in Chapter 
4, together with various guesses for the higher-order effects, to estimate 
the parameters of the bag model. But those QED calculations cannot 
be properly extrapolated to this situation, for they refer to a single shell 
in otherwise empty space. As we have seen, there is a delicate balance 
between interior and exterior contributions, so that only the sum is cutoff 
independent. The closely packed bags in Johnson's model present a quite 
different situation. In fact the energy density required in Johnson's model 
will be provided by the result of the calculation presented here, since the 
energy of space filled with contiguous bags is simply the sum of the field 
energies contained within each bag. 

We should remark on another simple application of zero-point energy 
considerations to hadronic physics. Fishbane, Gasiorowicz, and Kaus [222] 
calculated the zero-point energy in the flux-tube connecting a heavy quark-
antiquark system. They found, not surprisingly, that it coincides with the 
Liischer potential [83], 

v=-*m- (6'2) 
where 2a is the quark separation, which we have seen as the d = 0 case of 
(2.8) for parallel plates [see (1.35)], and we will see again as the result for 
a D = l hypersphere in (9.21). 

t r ie later replaced this model with one in which real gluons were condensed in the 
ground state. See Ref. [221]. At that point he argued that surface energies and shape 
instabilities led to the vacuum bag model being inconsistent. Given our continuing poor 
understanding of the nature of these effects, that dismissal seems premature. 
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Fig. 6.1 (a) The geometry of a spherical cavity imbedded in a perfect conductor. 
(b) The dual geometry of the bag model. 

6.1 Zero-point Energy of Confined Gluons 

Our discussion follows closely on the formalism presented in Chapter 4, as 
extended to dielectric and conducting balls in Chapter 5. For electrodynam­
ics the situation we consider is as shown in Fig. 6.1(a). Duality (E —> H, 
H —> —E) then allows us to extend the result to the QCD case, Fig. 6.1(b), 
where one must also allow for the fact that there are 8 gluon fields. 

There are, as we have seen, several methods of proceeding. One can 
compute the energy (or the stress on the surface) when the dielectric con­
stant e is finite in the exterior region, letting e —> oo at the end of the 
calculation. This is the procedure followed in Sec. 5.8. Alternatively, one 
can calculate the result directly for a spherical cavity in an infinite conduc­
tor. Since all methods agree, we simply derive here the expression for the 
zero-point energy in the latter case. It may be obtained from the interior 
contribution of (4.15), as exhibited in terms of scalar Green's functions: 

E 

x Uk2[Fi(r,r)+Gi(r,r)] + ±±r f ^ V [ F , + G|](r,r') 
r2 dr V dr . )}• 

(6.3) 

We should emphasize that the cutoff r —> 0 emerges naturally from the 
overlap of field points, with no reference to the properties of the boundary. 
Here k = \ui\ and Fi and G; are the transverse electric and magnetic Green's 
functions from which the vacuum parts have been removed [see (4.13a), 
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(4.14a), and (4.14b)]: 

r,r' <a: j J 1 = -AG,Fikji(kr)ji(kr'), (6.4) 

where 

A F = [ I ' 6.5a 

AG = V -a. M/ • 6-5b 

[kaji{ka)\' 
In the spherical-shell calculation given in Chapter 4 there were both interior 
and exterior contributions to the energy, and as a consequence the surface 
term [the second term in (6.3)] vanished. In fact, the surface term cancels 
a portion of the first term in (6.3), leaving us with 

1 P°° A 
E = - - ]T(2Z + 1) / ^e-^{AF + AG)ka{{[kajl{ka)}1)2 

+ i(ka)2-l(l + l)}[jl(ka)]2} 

= - — ^ ( 2 Z + 1) / dxx\^ + + + 2{e'le'l - eje{') cos xS, 
; _ i JQ K t* I J 

(6.6) 

Here, we have performed the Euclidean rotation as summarized in (4.27), 
and have introduced the spherical Bessel functions of imaginary argument 
(4.25), which are, more explicitly given by 

Expression (6.6) is nearly, but not quite, the same as that found by Bender 
and Hays [223]. Apart from an overall sign, their formula has an extra term 
which arises precisely because of the neglect of the surface term in (6.3). 

The result (6.6) is exactly what one would anticipate from the earlier 
work described in Chapters 4 and 5. The term proportional to 
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is just the inside part of the spherical shell result (4.23), while the remaining 
term is just the corresponding "volume term" [cf. (5.23)], which cancels for 
a shell.* It is the negative of what one would obtain from the use of the 
free-space Green's function in (6.3). 

To attempt to evaluate this expression, we employ the first two terms 
in the uniform asymptotic expansion for large I for the spherical Bessel 
functions, Eqs. (4.29a) and (4.29b), and approximate (6.6) by 

— V i / / dzt5 cosvzS+-Y' dzt6cosisz6 , (6.9) 

«a\£i J° AkJ° ) 
2ira 

where 

i/ = l + ^, x = vz, t = {l + z2)~l/2. (6.10) 

If we rather cavalierly set 6 = 0, and define the sum in terms of the Riemann 
zeta function as in (4.39): 

oo 

$ > • = ( 2 - - ix ( -o , (6.H) 
1=0 

we obtain a finite result, the leading terms of which are found in (5.93), 

E=(lL + J-Y- =
 0-™. (6.12) 

\72TT 128/ a a K ' 

As noted in Sec. 5.8, this disagrees with the result reported in Ref. [18] 
because of a simple error in evaluating the Euler-Maclaurin summation 
formula. § 

•••The exterior energy corresponding to (5.88) plus the interior energy (6.6) exactly equals 
the spherical shell result (4.23). 

§It is of interest to compare this with the formal result for the interior Casimir energy 
of a cube of side L, as reported by Lukosz [77] and by Ambj0rn and Wolfram [82]: 

£ c u w n t = O0916 ( 6 i 3 ) 

1-1 

(See also Ref. [80, 81].) It is doubtful that there is any significance to this very approx­
imate agreement. The fact that this number is within 1% of the spherical shell result 
(4.40) originally led some to attribute some significance to this answer. However, the 
fact that the corresponding result of a cylindrical shell differs by almost a factor of two 
(Ref. [24] and Sec. 7.1) seems strong evidence that any agreement is fortuitous. 

file:///72tt
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It will be rightly objected that this procedure has not removed the 
quadratic divergence found in Refs [16, 18], where if 5 is retained in the 
same leading asymptotic approximation [cf. (5.93)] 

3ira52 + E, (6.14) 

but merely defined it away. So let us, following Ref. [22], proceed in a 
more careful manner, keeping the convergence factor cos vz8 until the end. 
Because of that factor it is better to rewrite the integrals in terms of x: 

1 °° rc 

— Y I dx cosa:<5 ( i + x > 2 r 5 / 2 + ^ ( i + * > 2 ) - 3 

(6.15) 
We carry out the I sum first using the Euler-Maclaurin summation formula 
(2.84), 

£ / ( 0 = £ / ( 0 + / dif(i) + -[f(oo) + f(L + i)] 
1=1 1=1 JL+l £ 

OO ^ 

Here we choose L so that L5 <C 1; consequently, for the first term in (6.16) 
we can carry out the x integration with cos x8 —> 1. Thus we can write the 
first term in (6.15) as 

E(2) 1 
2na [f 

.Jo 
2 

dz cos vzb 

5 

12 

{ ' z • 

3t 3 

v —v — (6.17) 

Here v = L + 3/2 and consequently z = xjv. In obtaining this result 
we have inserted two contact terms: a term independent of x to cancel the 
"infinite" upper limit of the angular momentum integration, and, explicitly, 
a terms linear in x to make the z integral finite. These insertions are 
necessary because they correspond to 5 functions in the time separation 
(or derivatives thereof) which must be consistently omitted. [Indeed such 
terms were omitted in the derivation of the basic formula (6.6).] The L 
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dependence of (6.17) of course cancels and we are left with 

£(2) 11 

727ra' 
(6.18) 

which is just the first term in (6.12). 

We proceed in just the same way to evaluate the second term in (6.15). 

This t ime when the I sum is carried out we encounter not only a constant 

but a In £ term. This is spurious because it is canceled by an identical term 

which arises when the contour of integration is rotated from the real to the 

imaginary frequency axis. (See Chapter 7.) We are left with 

EW 1 

87ra 
/ dz I —v 

Jo V2 
\n(z't') +1' + \< 

3TT 

+ 16 128a' 
(6.19) 

exactly the second term in (6.12) [and one-half the leading (accurate) ap­

proximation for the spherical shell result (4.38)]. This last evaluation could 

be carried out much more simply by using in (6.9) [cf. (6.11)] 

y^cosvzS = 0. (6.20) 
1=0 

We do not advocate this lat ter approach, however, because it does not lead 

to a well defined integral11 for E^, and, more fundamentally, fails to reveal 

the divergence structure as being associated with contact terms. 

The hopeful reader might now suspect tha t a finite Casimir energy for 

virtual gluon modes interior to a sphere has now been achieved. Alas, such 

is not the case. For if we write the full vector result (6.6) as 

E 

with the Zth remainder term being 

7T/7 •<- ' 2na 
(6.21) 

; = i 

Ri = (21 
11 / 

Jo 

dxx 
dx 

\nsls'l+2(e'ls'l-els[') 

^The pole in z can be interpreted, however. If we use the sum V]°^ sini/z<5 = 
1/(2sinzS/2), we find a divergent term proportional to l/<52, and a finite term equal 
to (6.18). 
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1 t5 1 t6] , 
- T T - - F - 3 - cosx5> 6 - 2 2 

2v* z %vA z \ 

it is easily seen that a logarithmic divergence remains, since 

i r°° 
Rt~ — / c2z(4i5 - 53t7 + I20t9 - 71tn) cos yz<5. (6.23) 

8^ Jo 
The procedure described above applied to this expression leads directly to 

1 E(o) 
3157ra 

211 
81n(5/8) + — 

Alternatively, we can use 

oo 1 

^2-cosvz6 = -]n(z6/4), 5^+0, 

(6.24) 

(6.25) 

1=0 

to obtain the same result. The point is, 1/x in the frequency integrand 
cannot be canceled by a contact term. 

6.2 Zero-point Energy of Confined Virtual Quarks 

Similar considerations can be given for massless quark fields confined within 
a spherical bag of radius a, which imposes the linear boundary condition 
(4.53) on the surface S, 

(l + in -7)G 0. (6.26) 

It is straightforward to derive the Casimir energy expression in this case, 
following the formalism given in Sec. 4.2 (see Ref. [19]): 

1 °°. r°° 

i=o JU dx 
ln(sf + sf+l) - 2(s'l+lei + s[ei+l) 

(6.27) 
where, once again, we have removed the "vacuum" or volume energy by 
removing from the fermionic Green's functions the vacuum part 

G°(r,r')=ikjl(kr<)hl(kr>). (6.28) 

Equation (6.27) is immediately recognized as the "inside" part of the com­
plete fermionic Casimir energy (4.62). 



Zero-point Energy of Confined Virtual Quarks 113 

6.2.1 Numerical Evaluation 

6.2.1.1 J = 1/2 Contribution 

In addition to the linear boundary condition imposed above, the bag model 
possesses an additional nonlinear boundary condition, which expresses mo­
mentum conservation: For the fermions, 

d 
-flzE^TV* 2 5 , (6.29) 

where the sum ranges over the various species of quarks, and B is the bag 
constant. This restricts valence quark states to only those characterized by 
total angular momentum J = 1/2. However, it imposes no condition on 
the fermionic Green's function (how could it, since G is already uniquely 
determined) but rather expresses the zero-point, quantum fluctuation con­
tribution to the bag constant. This will be discussed further below in 
Sec. 6.4. 

Nevertheless, it is interesting to compute the J = 1/2 contribution to 
(6.27), since the lowest mode might be thought to be the most important, 
and because it provides a check on the accuracy of the approximations to 
be made subsequently. Since 

s0(x) 

e0(x) 

sinha;, si(x) cosh a; sinha;, 
x 

e1(x) = 1 + 
1 

(6.30) 

we have for the J = 1/2 contribution to the fermionic zero-point energy 

E1/2 
^f 

2 f°° 
— / dxxf(x), (6.31) 

with 

/(*) 1 + 

1. 
x 

2x2J 
coth 2x —— csch2:c 

2xz 

sinh: cosh: 

Numerical integration yields 

E1/2 0.183414 0.0583826 

(6.32) 

(6.33) 
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Note that this contribution is attractive. It is instructive to compare this 

with the lowest-mode contribution of a confined vector field. From (6.6) 

the latter is 

o /-oo 

K = -;— / dxx 
lira J0 s i 

l+S-L+e(s'1e'1-els'{) 

3 r°° 
= TTn / dxx9(x)+KM (6-34) 

Zna J0 

where E% s h e l l is the result of interior and exterior mode contributions [15], 

_ ! 0.0472709 3 . . 

^,eheii = " « " ^ > (6-35) 
and the integral cancels off exterior modes. Explicitly, 

"1 + 1/x + l/x2 (l + 2/x2)(l + l/x) 
9(x) 1 + 1/x l + l/x + l/x2 

2 1 / 2 1 + 2 + ^ " ^ + b + ^ J e (6-36) 
and numerical integration yields 

/ • O O 

/ dxxg(x) = -0.273074. (6.37) 
Jo 

As a result, the lowest-mode vector contribution is 

El = - ™ , (6.38) 

which is also attractive, but more than 3 times larger than the lowest-mode 

spinor contribution (6.33). 

6.2.1.2 Sum Over All Modes 

Again we use the uniform asymptotic approximants to carry out the sum 

over all modes. The leading approximation to (6.27) is 

Ef VV/ + 1) / dz z2t5 cos zi/6. (6.39) 
2 n a i=o Jo 
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Again setting (5 = 0 and using (6.11) we find (see Ref. [20]—again an error 

was present in Ref. [19]) 

Ef 1447ra 
(6.40) 

Of course, we have again used the zeta-function magic to sweep away the 

infinity. If, instead, we do the integral over z in (6.39), we obtain 

Jo 

i 
dzz2tBcosvz6 = v6Ki(i/6) - -{v6)2K2(v6), 

making it simple to do the sum over I using (n > m) 

dxxnKm(x) = 2 " - ^ f n + m + 1 1 r 
n — m + 1 

(6.41) 

(6.42) 
/o V 2 

The result is again quadratically divergent, with the finite part given above, 

1 
E f 3irad2 + Ef. (6.43) 

Again, let us extract the finite part by the careful contact te rm method 

used in the gluon case. Here, the Euler-Maclaurin sum formula gives 

f 2na[J0 \ 
2 2 1 1 , 

z—t—r 
3t 3 3 3 

1 

1 3 11 5 5
 7 1 1 (-1 „ 3 

(6.44) 

where now v = L + 5/2, and appropriate contact terms have been inserted. 

Evaluation of this yields precisely (6.40). [The 0{vl) te rm for fermions 

vanishes by virtue of the identity (6.20).] 

6.2.1.3 Asymptotic Evaluation of Lowest J Contributions 

It is of some interest to note how accurate the uniform asymptotic approx­

imation is even for the lowest angular momentum contributions. Thus the 

J — 1/2 contribution is approximated by 

E 
1/2 1 _ 0.0531 

6ira a 
(6.45) 
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which is within 10% of the exact value (6.33). The similar approximation 
to the I = 1 contribution for the vector field is 

1 _ * ! » 
2na a 

which is not far from the correct value given by (6.38). Including the next-
to-leading approximation here changes this to 

„i 1 / 1 3TT\ 0.183 .„ ^ 

which is only off by 3%. 

6.3 Discussion and Applications 

To summarize, we have not yet achieved a finite theory of the zero-point 
energy of fields confined within finite geometries. But, as in the case of a 
dielectric ball, we see that the dominant quadratic divergences are illusory, 
being merely contact terms. The residual logarithmic divergence can only 
be removed by a refinement of the bag model. Presumably, since the diver­
gences are associated with the surface (see Chapter 11) a softening of the 
boundary conditions would yield a totally finite result. There are also ad­
ditional divergences that occur with massive quarks, which were discussed 
by Baacke and Igarashi [224]. 

But already we can make some definite qualitative and semiquantitative 
conclusions which should have significant phenomenological implications. 
Putting together Eqs. (6.12) and (6.24) we haveU 

1 A 

Ev~ -(0.0898 + 0.00808In-). (6.49) 
a, 8 

Plausibly In 6/8 ~ 1 when realistic boundary conditions are imposed (the 
surface region should have a "skin depth" of at least 10% of the whole 
radius), so we can drop the logarithm term for a first crude estimate. Mul­
tiplying by 8 for the eight gluons gives then the following estimate for the 

IIA very similar result has been found by Romeo [225] for a scalar field in a spherical 
bag: 

Es = — (u.0089 + ln/xa^ , (6.48) 
2a \ 3157T / 

where ix is a mass parameter introduced in his zeta-function technique. 
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zero-point energy: 

EZp « +0.7/a. (6.50) 

(It is certainly very hard to doubt the sign of the effect.) Numerically this 
is the whole story since the fermion contribution is far smaller (the leading 
approximation per degree of freedom is down more than a factor of 20). 

It is not that the quadratic divergences are incorrect, but rather they 
are seen to correspond to contact terms, and thus can be removed unam­
biguously. These are precisely analogous to the volume divergence which 
must always be removed from the Casimir stress. These contact terms may 
be thought of as renormalizations of phenomenological parameters of the 
effective theory, just as we discussed in Chapter 5. Thus we expect there 
should be the following phenomenological terms in the energy describing 
the bag, 

H' = BV + a A + Fa, (6.51) 

where B is the bag constant, a is a constant surface tension, and F is a 
constant force. The necessity of introducing B and a has been previously 
recognized [84, 85, 86, 87, 220]; however, equally well there is no reason 
to exclude F. In fact, all such terms may be regarded as contact terms, 
since they are polynomials in the bag radius. Since 8 = ir/a, we appreciate 
that the divergent parts of (6.14) and (6.43) are of the form of Fa, and 
so merely renormalize that phenomenological parameter. (Note that the 
volume energy subtraction can be thought of as a renormalization of B, 
but no term of the form crA occurs in zero-point energy calculations [131, 
226, 227]. Eq. (6.51) would seem to represent the correct phenomenology, 
not the usual 

H' = BV + a A - Z/a, (6.52) 

since the last, nonlocal term, is a calculable effect. As we have noted in 
Chapter 4, similar considerations are made in Elizalde, Bordag, and Kirsten 
[199], for quarks of mass fx. Blau, Visser, and Wipf [228] had earlier argued 
that the bag energy should have the form 

Z A 
H' = BV + o-A + Fa + k-\ lnua, (6.53) 

a a 

and that only the coefficient A of the logarithmic term is computable. 
Clearly, work remains to be done! 
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6.3.1 Fits to Hadron Masses 

The bag-model Lagrangian is 

£ b a g = (CD + £ Y M - B)r}@1>), (6.54) 

where £D,YM are the Dirac and Yang-Mills Lagrangians, respectively, B 
is the bag constant, and r\ is the unit step function. Variation of (6.54) 
leads to the following linear and quadratic boundary conditions (n^ is the 
outwardly directed normal) 

—ijnip = ip, (6.55) 

equivalent to (6.26), 

naG
al3 = 0, (6.56) 

equivalent to (6.1) and 

-lG
2-±(nd)W = B, (6.57) 

equivalent to (6.29) in terms of its quark contribution. Here na is the unit 
normal to the bag boundary. 

The MIT bag model consists in solving the Dirac equation subject to the 
boundary conditions (6.55), (6.56), and (6.57), which in the simplest real­
ization refer to a spherical cavity approximation. The interactions, through 
the gauge fields, are treated perturbatively in the approximation that the 
strong coupling is regarded as small, Q S C 1 . The radial wavefunctions are 
then expressed in terms of spherical Bessel functions. The mass content of 
the model is consequently reduced to the following mass function (a is the 
bag radius): 

M(a) = ^irBa3 + Y,^-^+EmaK + Eeh (6.58) 
i 

The first term is the volume energy required to create the "bubble" in the 
normal vacuum, Ui/a is the kinetic energy of the ith quark, Z is the so-called 
zero-point energy parameter, and Ema.g and Ee\ are the chromomagnetic 
and chromoelectric energies, respectively. The latter appears small, and 
there are uncertainties in its calculation, so we shall henceforth ignore Ee\. 

The linear boundary conditions are implemented through 
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(1) the transcendental equation expressing x = pa in terms of u = fxa 
(p and (j, are the quark momentum and mass, respectively) 

xcotx = 1—u—\>u2 + x2, (6.59) 

and 
(2) the expressions for Emag and Ee\. 

The quadratic boundary conditions are implemented by minimizing M{d) 
with respect to a, 

^ = 0. (6.60) 
da 

Particularly simple is the case of N massless quarks: 

M(a) = -nBa3 + -(Nx0 -Z+ -asaTh00), (6.61) 

where the coefficient of 1/a in the second term is independent of a. Here 
XQ = 2.0428, /ioo = 0.177, and a-r = —6, —3, +2, and +3 for spin states S = 
0, 1/2, 1, and 3/2, respectively. From (6.61) and (6.60) we can obtain ex­
plicit linear relations between bag-model parameters C — (4/3)4/3(47r5)1/3, 
Z, and as, and 4/3-powers of input masses, for example 

Cx0 = \Mr + \MT-Mt'\ 
CZ = 2M^ / 3 - 3M,y3, (6.62) 

Ch00as = ^M%3 - \MAJ\ 

The experimental masses for A, N, and to then determine the bag-model 
parameters: 

B 1 / 4 = 0.14535 GeV, (6.63a) 

Z = 1.8327, (6.63b) 

as = 2.1736. (6.63c) 

The other fit masses are shown in Table 6.1. The results are essentially 
identical with those found in Ref. [86]. 

After this review of the standard bag-model fits, we recognize that the 
solution (6.63b), (6.63c) for the parameters Z and as is inconsistent. We 
can say rather little about the difficulty associated with the largeness of as 
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and the consequent failure of first-order perturbation theory. However, we 
can do something about the incorrect sign and magnitude of Z. 

The relatively reliable calculations of the zero-point energy (Casimir 
effect) of gluons confined within a spherical cavity described above (recall 
that the effect of zero-point fluctuations in the quark fields is negligible) 
suggests that an appropriate value of Z arising from this phenomenon is 

^Casimir _ _ j _ (g g ^ 

However, other phenomena, particularly center-of-mass corrections [229, 
230, 231] contribute to a term of this form in M(a). Estimates suggest 
ZCM ~ + 1 . Thus, while early guesses for ZCaslnUT were that it was it was 
positive, and of a value consistent with the magnitude in (6.63b), it now 
appears that Z is small, possibly negative. Can such a value be accom­
modated? A possible scheme for doing so was suggested above—one could 
add to M{a) a constant force term, Fa. (As we have noted, such a term 
appears as a contact term in the calculation of Z.) This is in the spirit 
of the Budapest group [220] who add a surface tension term, Airaa2. The 
question is, can we fix Z at a reasonable value, and still obtain a good fit 
to masses by allowing F to be a free parameter? The answer is yes, as the 
calculations summarized in Table 6.1 show. 

In conclusion, we see that all the fits are fair; none of the bag-model fits 
agree well with the pseudoscalars (for that we need chiral bag models [232, 
233]), whereas the baryons and vectors mesons are adequately represented. 
Noteworthy is the fact that all the fits agree far more closely with each 
other than with the data; this probably reflects the common simplicity of 
the models, and the common fit masses. This agreement is striking given 
the large variation in the parameters Z and F. In any case, the challenge 
raised in Ref. [18, 19] has been answered: a correct treatment of zero-point 
energy effects appears compatible with the bag model, provided an enlarged 
parameterization of the model is allowed. 

6.4 Calculation of the Bag Constant 

As we noted above, the nonlinear boundary condition (6.29) or (6.57) is 
not used in finding the zero-point energy, but rather we regard it as an 
expression of the fermionic (and gluonic) contribution to the bag constant 



Calculation of the Bag Constant 121 

Parameters 
and Masses 

Z 
B1/4(QeV) 
F (GeV2) 

as 

ms (GeV) 
RN (GeV-1) 

5m (GeV) 

TOTT 

mv 

mvr 
mK 

mN 

mA 

m s 

771= 

" i f 

m^ 
m^ 

mjf* 

mA 

m s . 
m=» 
mn 

Experimental 
Values 

0.138 
0.549 
0.958 
0.4957 
0.9389 
1.1156 
1.1931 

1.13181 
0.769 
0.7826 
1.0195 
0.8921 
1.232 
1.3839 
1.5334 
1.6725 

Model 
A 

-1.0 
0.19526 

-0.21923 
2.16066 
0.2807 

5.06 
0.1325 
0.3610 
0.645 
0.5031 
0.5827 
0.9389 
1.1022 
1.1426 
1.2885 
0.7826 
0.7826 
1.0733 
0.9251 
1.232 
1.3760 
1.5229 
1.6725 

Model 
D 
1.0 

0.16515 
-0.064729 

2.17932 
0.2802 
5.03 

0.1343 
0.3229 
0.6105 
0.4702 
0.5489 
0.9389 
1.1017 
1.1426 
1.2876 
0.7826 
0.7826 
1.0711 
0.9246 
1.232 
1.3761 
1.5229 
1.6725 

Model 
E 

1.8327 
0.14535 

0 
2.19897 
0.2797 

5.01 
0.1408 
0.2833 
0.5583 
0.4209 
0.4982 
0.9389 
1.1012 
1.1422 
1.1867 
0.7826 
0.7826 
1.0688 
0.9229 
1.232 
1.3762 
1.5230 
1.6725 

Table 6.1 Fits to bag model parameters and hadron masses for various values of the 
"zero-point" energy parameter Z. The underlined values are fitted. The nucleon radius 
is RN, while ms is the strange-quark mass. 8m is the variance in the predicted masses. 
(All masses are in GeV.) These calculations were performed some years ago by Gary 
Kohler (unpublished). 

itself. We do this by replacing in (6.29) 

iip(x)i/j(x')~f° - . G ( i , i ' ) , 

so we find 

• 9 -_. 
i— tr G{x,x) 
or 

W 
N' 

(6.65) 

(6.66) 
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where N is the number of quarks. Prom the explicit construction of the 
Green's function as given in Sec. 4.2, we obtain 

-jj_l/2(ka) tr zJ
JM

1/2(n)zJ
JM

1/2(siy] 

or 

. ^ . u I -"2 t ^ -1- ° 2 

8TT2 

N ^ „ N f00 , d , /s?.,(a:) + s?(:i:)\ 

This formula, which is very similar to (6.27) for the energy, is the expression 
of the quark-field fluctuation component of the bag constant. It opens up 
the possibility of computing the bag constant from first principles. 

In fact, if we believe that only the finite part of (6.68) is meaningful, 
perhaps a dubious proposition, we might be led to the following connec­
tion between the fermionic Casimir energy (6.40) and the bag constant (in 
the following, because we are making only a heuristic argument, involving 
orders of magnitude, we ignore the sign discrepancy): 

B=^\Ef\. (6.69) 

If we assume there are three light flavors of quarks (of three colors), we 
have N = 9, and the bag constant is given by 

/ Q 1 \ 1 / 4 

B1/4 = I ) (0.2 GeV) = 0.053 GeV, (6.70) 

which is about three times too small. 
In view of the dominance of the gluonic contribution to the Casimir 

energy, it may not be surprising to suggest that this discrepancy may be 
attributed to the gluonic effect. In fact, according to (6.57), the gluonic 
contribution to the bag constant is proportional to the so-called gluon con­
densate, but now appropriate to a larger bag containing quarks, 

B9 = \(G2) (6.71) 
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A value for the latter, for the case of empty bags populating the vacuum 
and arising from vacuum fluctuations, will be given in Sec. 11.4, which 
in fact is consistent with the estimates for the gluon condensates given in 
terms of QCD sum rules [234, 235]. Although a direct calculation shows a 
local surface divergence (see Sec. 11.4), this we believe is spurious, and we 
crudely estimate the condensate by taking the value at the center of the 
bag. Using the value given in (11.48a), multiplying by 8 for the number 
of gluons, and dividing by a bag radius of order 5 GeV^1, we find for the 
gluonic contribution 

0.8 

4 (5GeV Z i ) 4 

or 

B „ 1 ^ _ , (6.72) 

B g
1 / 4~0.2GeV, (6.73) 

which quite overwhelms (6.70), and is quite consistent with the estimates 
appearing in Table 6.1. 

This speculative but provocative idea obviously warrants serious analy-

6.5 Recent Work 

We close this chapter by citing some recent references on the application of 
quantum zero-point energy to hadronic physics. This includes the work of 
Fahri, Graham, Jaffe, and Weigel, on the quantum stabilization of 1 + 1-
dimensional static solitons [236], of Graham, Jaffe, Quandt, and Weigel on 
quantum energies of interfaces [237], of Hofmann, Gutsche, Schumann, and 
Violler [238, 239, 240] on cavity quantum chromodynamics to order o^, and 
of Cherednikov and collaborators on hybrid bag models [241, 242]. It is fair 
to conclude that the development of hadronic applications of zero-point 
energy is still, after all these years, in its infancy. 





Chapter 7 

Casimir Effect in Cylindrical 
Geometries 

7.1 Conducting Circular Cylinder 

Since parallel plates yield an attractive Casimir force, while a conducting 
sphere experiences a repulsive stress, one might guess that for a conducting 
cylinder a zero stress results. In fact, Balian and Duplantier [14] obtained 
the result in the two-scattering approximation (which was quite accurate 
for a spherical shell) that the Casimir energy vanished for a long cylinder. 
The actual situation is not so simple. The first calculation was carried out 
in 1981 by DeRaad and Milton [24]. The electrodynamic result turns out 
to be attractive but with rather small magnitude. 

Consider a right circular perfectly conducting cylinder of infinite length 
and radius a. We compute the Casimir energy using the above Green's 
dyadic formalism, adapted to this cylindrical basis. The necessary infor­
mation about vector spherical harmonics in this case is given in Stratton 
[184]. The results for the Green's dyadics are 

T(r,r')= £ J 

^ 2 

dk 

2~n 

1 
MM'*(dm-k2)Fm(r,r') 

NN'*G m ( r , r ' ) Xmk{6,z)X*mk{6'iZ') 

*( r , r ' 
OO „ 

m = — oo 

i 

dk 
2n 

iMN'*Gm(r,r') 

NM'*Fm(r,r') Xmk(e,z)x*mk(°',z') 

(7.1a) 

(7.1b) 

125 
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where the nonradial eigenfunctions are 

Xmk(e,z) = ^=eimeelk* 
2TT 

the vector differential operators M and N are 

~im A 9 „T „ , d Amk 
M = f 0—, N = fifc— - 0 zd„ 

r or or r 

and the scalar cylinder differential operator dm is 

1 d d m2 

dm = - — r -
r dr dr 2 ' 

(7.2) 

(7.3) 

(7.4) 

Maxwell's equations (2.96a)-(2.96d) for the Green's dyadic are to be 
solved subject to the perfect conductor boundary conditions 

0 - T = z - T ' = f - * | = 0 , 
lr=a \r=a lr=a ' 

which means in terras of the scalar Green's functions 

G m ( a , r ' ) = 0 , m ^ O , 

d 
dr 

Fm(r,r') = 0, 

;G0(a,r') + Gg(a,r') = 0. 

(7.5) 

(7.6a) 

(7.6b) 

(7.6c) 

The solutions for the scalar Green's functions in the interior and exterior 
regions are 

r,r < a : 

_iF (r r>\ - iZL Jm(Ar<)Fm(Ar>) - ^ J m ( A r ) J m ( A r ' ) 

1 
A2 : + ^G^r,r'), 

fmM = £ Jm(Ar<)iJm(Ar>) 
ffm(Aa) 
Jm(Aa) 

(7.7a) 

Jm(Ar)Jm(Ar') 

+ ^ ° ( r , r ' ) , 

ym { ' ' 2|m| V^> 

|m| 1 r |m| r / |m| 

2|m| a 2 M 
, m ^ O , 

(7.7b) 

(7.7c) 
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r,r > a : 

LF (r r>) = JUL 
LO2 m[ ' ' 2A2 J m (Ar<) f f m (Ar>) - ^ M f f m ( A r ) f f m ( A r ' ) 

+ ^ ^ ( V ' ) , 

w
0 m ^ r J 2A2 ^m(Ar<)iJ m (Ar>) 

? G , F (r,r ') 

1 

1 
~2\m\ 

GZirS), 
1 

tf^(Aa) 

Jm(Aa) 

Hm(\a) 

0 2 |m | |m| 

~ 7 2 [mf r l m l r ' l m l ' 

(7.8a) 

tfm(Ar)ffm(Ar') 

(7.8b) 

m ^ 0, (7.8c) 

where Hm = Hm' is the Hankel function of the first kind, and A2 

-,G,F 
L02-k2. 

Although QQ'*' are not determined, they do not contribute to physical 

quantities. 

From the above result we can compute Trr on the cylindrical surface, 

where, making use of the boundary conditions appropriate to a perfect 

conductor, we have 

Trr = 2^B± ~ Er) (7.9) 

In terms of the Green's dyadic given by (7.1a) and (7.7a)-(7.8c), we have 

i(ET{x)Er,{x'))= / ^ e - ^ t - t ' ) f - r ( r ) r » . f ' , (7.10) 
J IT: 

which implies for the square of the electric field on the cylinder's surface 

t(E2(a+)) = C 

i{E2
r{a-)) = C 

l(u2H'm{z) m2u2Hm{z) 

Hm{z) z2 Hm(z)J\' 

J'm{z) m2ui2 Jm(z) 1 
fc2 

Z V Jm{z) * J'm{z) 

(7.11a) 

(7.11b) 

Here we have set z — -Xa and used the notation 

/

OO J ° ° /-OO Jjr 

T^) E / ^fm(z;k,u;). (7.12) 
-oo ^ 7 r _ J — oo ^7T 

m= — oo 

Here we have introduced a high-frequency cutoff function rf)(u>) which will 
be discussed in detail below. 
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Similarly, the product of magnetic fields is given by 

i(Bz(x)Bz(x')) = f 
du> 
—< 
2TT 

-*"(*-*') _L z - # ( r , r ' ; o ; ) - ^ ' x z , 

so as a consequence 

i(Bl{a+)) = C 

i(Bl{a-)) = C 

A2 Hm(z) 
2nzH^(z)\> 

A2 Jm(z) 

while 

2-KzJ'm{z)_ 

:(Be(x)Bg(x')) = f p e - ^ - ^ - G • *(r , r ' ;o;) • V x 0, 

i(B2
e(a+)) = C 

i(BJ(a-)) = C 

2TTZ 
U!' 

,H'm{z) w?k2Hm{z) 
Hm(z) H>m{z) 

1 ( 2JL(Z) m2k2 Jm(z 
2nz 

LO 
Jm{z) Jm{z) 

(7.13) 

(7.14a) 

(7.14b) 

(7.15) 

(7.16a) 

(7.16b) 

In deriving these results, we have ignored (^-function terms, since the coin­
cidence of field points is to be understood in the limiting sense. We have 
also used the Wronskian 

2i 
Jm{z)H'm{z) ~ Hm{z)J'm{z) 

7TZ 
(7.17) 

Inserting these field products into the stress tensor expression (7.9), we 
obtain the result for the force per unit area is* 

J7 = (Trr)(a-

i 

)-(Trr)(a+) 
A / Hm H!^ J'm J!^ 2 \ 
, 2 ff + ff/ + / V z) 

r°° A, , i °° r°° AI. Ft i r°° duj , . , I ^ r°° dk d , , l 2 \ , 
2ia 

*If we drop the regularization factor, perform the naive substitution u> —• if, and intro­
duce polar coordinates (?a? + k2a2 = r 2 , d^adka = rdrdd, (7.19) reads 

T = 
1 1 

^ ( 2 ^ j 2 E 
m = —oo 

r d r l n ( l - [ r ( / m ( r ) X m ( r - ) ) ' ] 2 ) . (7.18) 
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where 

\m=Z-^[Jm{z)Hm(z)}'. (7.20) 

We are interested only in the real part of this expression. The path of UJ 
integration in (7.19) is understood to be just above the real axis for u) > 0, 
and just below for w < 0. (See Sec. 4.1.) 

Here, because convergence is more subtle than in the previous cases, 
we have, following Balian and Duplantier [14], inserted a frequency cutoff 
function ip(to) that has the properties 

V>(o) = I , 

^ H ~ i^p, M - oo, (7.21) 

ip(u>) real for u> real or imaginary. 

A way of satisfying these conditions is to take 

^M = E ( 2 T 2 + 2 f .) , (7-22) 

with the following conditions on the residues and poles: 

^ R e a * = 0, (7.23a) 
i 

2 E R e - S = -L (7-23b) 
i ^ 

Of course, the poles are to recede to infinity. When we rotate the contour 
to imaginary frequencies, the contribution of these poles is necessary to 
achieve a real, finite result. 

Once again we use the uniform asymptotic expansion to extract the 
leading behavior. We evaluate the m sum in (7.19) for the leading term, 

which gives 

~d ( * \ 
dz V 4(m2-z2)V 

z4 

l n ~ 4 ( m 2 - z 2 ) 3 ' 

/ l 5 d Id2 1 d3 \ 
~ \2 + 2dp + 4dp2 + 4dp3~J 

(7.24) 

1 

m2p2 — z2 
P=I 
(7.25) 
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by using the identity (2.45), or 

+ Z2+ -r=r- (7-26) 

Only the terms here of order z~x and z~2 yield cutoff dependence. The last 
term in (7.26) for p = 1 has a corresponding k integral (y = ka, x = wa) 

dy~ J - ^ = -l*i + C (7-27) 

where a cutoff in y is incorporated in the complex constant c. This constant, 
corresponding to a ^-function in time, is to be ignored. The remaining 
frequency integral 

/ dx-ip(x)lnx (7.28) 
Jo 

is evaluated by rotating the path of integration to lie along the imaginary 
axis. In so doing, we pick up contributions from first quandrant poles of 
ip(x), 

2 7 r i ^ ^ - l n / U i , (7.29) 
i "' 

which cancels the imaginary part of the integral along the imaginary axis,* 

- i 2 R e ^ ] T — ln/ii. (7.30) 
2 . ^ 

The z~2 term in (7.26) gives 

1 r°° f00 1 
- - / dxiP(x) / dy^—^, (7.31) 

which is identically cancelled by the cutoff-dependent term coming from 
the m = 0 contribution in (7.19). The behavior for large argument there is 

1"We take /i;, without loss of generality, to lie in the first quadrant, so — (i*, —fn, and /i* 
lie in the second, third, and fourth quadrants, respectively. 
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just the m = 0 limit of (7.24) 

l n ~ - L (7.32) 

which when z-^ is applied gives just the negative of the integral (7.31). All 
that remains is finite, for it is easy to see that terras of order z - 3 ' 2 have 
vanishing pole contributions as the poles in ip recede to infinity, and finite 
integrals along the imaginary frequency axis. 

The energy per unit length £ is expressed in terms of integrals over 
polar coordinates, 

x —•> ix, y —> y, r2=x2+y2, dxdy = 2irr dr, (7.33) 

of functions constructed from modified Bessel functions, 

I„(x) = e-i»niJv(xeivi), (7.34a) 

K„(x) = ^iei^'Hvixei™). (7.34b) 

The result is 

£ = im
2F =—^{S + R + Ro), (7.35) 

where, from the asymptotic behavior, 

1 f°° 
S = — I dr-n(coth.%r — 1) 

2 . /e- ,0 
1 fd Id2 1 d3 \ [°° , f n ( , w \ 1] +2 [%+w+2 ^ ) L dr b rthv=p" v" rj ^ 

= - - l n 2 7 r e + - , (7.36a) 

while the remainders are integrated by parts, 
0 0 /«oo f 4 \ 

R=-AT rdrhn[l~(r(Im(r)Km(r)Y)2^ T I 
m = l ^ ^ 4(m2 + r 2 ) 3 J 

= -0.0437, (7.36b) 

Ro = - 2 y " r d r j l n [l - (r(I0(r)K0(r))')2} 4- — 1 - 1 

- In e + 0.6785. (7.36c) 
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Adding these numbers, we see that the infrared singularity In e cancels, and 
we obtain an attractive result, 

0.01356 
£ = — ' 7 - 3 7 

az 

equivalent to (1.33). 
Recently, this result has been confirmed by two independent calcula­

tions. First, Gosdzinsky and Romeo obtained the same answer, to eight 
significant figures, using a zeta-function technique [243]. Shortly there­
after, an earlier calculation by Nesterenko was corrected to yield the same 
answer [43]. This latter method is based not on the Green's function, but 
rather an analytic evaluation of the sum of zero-point energies through the 
formal formula for the energy per unit length 

1 f°° dk °° 1 1 f 
£=2 ^ £ M2fc

ud»]*Mk>U>a)> ( ? - 3 8 ) 

" , - ° ° m = - o o J<-

where fn is a function, the zeroes of which are the mode frequencies of 
the system, and where C is a contour initially chosen to encircle those 
zeroes. The divergences there are regulated by a zeta function technique; 
the results, both analytically and numerical, are identical to those reported 
here and derived in Ref. [24]. This calculation will be described in Sec. 7.2 
below. 

7.1.1 Related Work 

Nesterenko and Pirozhenko [244] have worked out the Casimir energy for a 
massless scalar field with Dirichlet boundary conditions on a cylinder. The 
result is repulsive, but with a very small magnitude, 

e.- ™™S«. (7.39) 
a* 

Scandurra [245] considered a cylindrical J-function shell potential for a 
massive scalar field. The result is divergent, but if the divergent terms are 
subtracted by requiring the vacuum fluctuations to vanish for infinite mass 
(the method advocated by the Leipzig group), a finite energy results, which 
goes like In /j,a/a2 as fia —> 0, and like —l//xo3 for //a —> oo. 

Related is the Casimir energy of a field in the presence of a magnetic 
fluxon. Leseduarte and Romeo [246] considered the influence of a magnetic 



Conducting Circular Cylinder 133 

fluxon on a massless scalar field confined by a circular, and by a spherical 
bag, and also a massless fermion in the former case. For a sphere, the result 
(9.34) was recovered. Sitenko and Babansky [247] considered the Casimir-
Aharonov-Bohm effect, that is, the vacuum energy of a massive scalar field 
in the presence of a magnetic vortex line, where the scalar field vanishes on 
the line. If the magnetic flux vanishes, the Casimir energy diverges. 

7.1.2 Parallelepipeds 

It may be of interest to compare the result (7.37) with the calculation given 
by Lukosz [77, 78, 79] for the force/area due to interior electromagnetic 
zero-point fluctuations for a cylinder with a square cross section: 

0.0382 
• ' s q u a r e cylinder — 4 • \''^^) 

(See also Refs. [80, 81] and [82].) If we compare this with the corresponding 
force per area of a circular cylinder of the same diameter, with both interior 
and exterior electromagnetic fluctuations, which from (7.37) is 

J circular cylinder — /r» \ 4 ' V '^ -V 

(2a)4 

we see nearly a factor of two discrepancy. Actually, we have no reason to 
trust the result (7.40) because when the exterior modes are excluded the 
result is terribly divergent; Lukosz obtains a finite result through the magic 
of zeta-function regularization. Thus the numerical coincidence of Lukosz' 
result for (the interior modes of) a cube with that for (the interior and 
exterior modes of) a spherical shell—see (6.13)—is surely fortuitous. 

For later work on the interior modes in parallelepipedal geometries, see 
Refs. [248, 249, 250, 251, 252]. The temperature dependence for the interior 
Casimir effect for hypercuboids in n dimensions was considered by Kirsten 
[253]. 

7.1.3 Wedge-Shaped Regions 

The formalism developed above may be applied readily to calculate the 
Casimir effect in wedge-shaped geometries, say space divided by two con­
ducting planes making an angle a with each other. Such a situation was 
examined by Brevik and Lygren [254], see also [255], which was closely based 
on our work [24] and on Ref. [256]. Physically, this is of interest because 
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it can describe the geometry in the neighborhood of a cosmic string [257, 
258]. We will discuss some of the local results in Chapter 11. Other relevant 
citations are Refs. [102, 259, 260, 261, 262].* 

7.2 Dielectric-Diamagnetic Cylinder—Uniform Speed of Light 

In this section we consider the Casimir energy of an infinite solid cylinder 
surrounded by an uniform medium. The permittivity and permeability of 
the cylinder material (ei, /Ui) and those of the surroundings (e2, ^2) are 
considered to be arbitrary. In principle they may depend on the frequency 
of the electromagnetic oscillations (dispersive media), but we will ignore 
this dependence at present. In Sec. 7.2.1 we derive the general integral rep­
resentation for the Casimir energy, based on (7.38), and then in Sec. 7.2.2 
we specialize to the circumstance when the speed of light is the same inside 
and outside the cylinder, ei/ii = €2/̂ 2 = c _ 2 - When this condition is satis­
fied, all the divergences cancel between interior and exterior modes. Here, 
we regulate those divergences by employing the zeta function technique. In 
Sec. 7.2.3 the cases when ^2 < 1 and £2 = 1 are considered numerically, 
£2 being (ei — £2)2/(ei + £2)2- The first case gives the Casimir energy of 
a dilute dielectric-diamagnetic cylinder, while the second case corresponds 
to a perfectly conducting infinitely thin cylindrical shell. Remarkably, the 
Casimir energy obtained for a tenuous medium vanishes, as it does for a 
tenuous dielectric cylinder. The result obtained in the second case is iden­
tical to that obtained by the Green's function method of calculating the 
energy and regulating the divergences by use of an ultraviolet regulator as 
obtained in the previous section. We conclude this section by discussing 
the significance of the results obtained. The calculations presented in this 
section were first published in Ref. [43]. The Green's function formulation 
of this problem was given in Ref. [256], a straightforward generalization of 
the procedure described in Sec. 7.1. 

l-Aliev [263] calculated the Casimir force between two parallel cosmic strings (there is no 
classical force between the strings). If the (dimensionless) mass densities of the strings 
are fj,i, \xi and the separation is a, the force per unit length is 

As Aliev remarks, this may be regarded as a gravitational analog of an Aharonov-Bohm 
interaction between two thin solenoids. 
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7.2.1 Integral Representation for the Casimir Energy 

We shall consider the following configuration. An infinite circular cylinder 
of radius a is placed in a uniform unbounded medium. The permittivity 
and the permeability of the material making up the cylinder are e\ and 
pi, respectively, and those for surrounding medium are e2 and fi2. It is 
assumed that the conductivity in both the media is zero. We will compute 
the Casimir energy per unit length of the cylinder. 

In the mode summation method, the Casimir energy is defined by 

to 

where UJP are the classical eigenfrequencies of the electromagnetic oscilla­
tions in the system under consideration, and Qp are those in the absence 
of any boundary, that is, when either medium fills all space. (When the 
precise meaning is not required, we denote this by the formal limit a —> 00.) 
The set {p} stands for a complete set of quantum numbers (discrete and 
continuous) which is determined by the symmetry of the problem. Either 
sum in (7.43) diverges, therefore a preliminary regularization is required. 

In order to find the eigenfrequencies one needs to solve Maxwell's equa­
tions for the given configuration with the appropriate boundary conditions 
on the lateral surface of the cylinder. As is well known, it is sufficient to re­
quire the continuity of the tangential components of the electric field E and 
of the magnetic field H [184]. In terms of the cylindrical coordinates (r, 8, z) 
the eigenfunctions for this boundary value problem contain the factor 

exp(—iuit + ikz + im9), (7-44) 

and their dependence on r is described by cylindrical Bessel functions Jm 

for r < a and by Hankel functions of the first kind Hm = Hm for r > a. 
The eigenfrequencies are the roots of the equation (Ref. [184], p. 526) 

fm(k,w,a) = 0, (7.45) 

where 

fm = \2
1\

2
2AlE(\1a,\2a)A™(\1a,\2a) 

- m2co2k2(e1p1 - e2Ai2)2 (Jm(\ia) Hm(\2a)f , (7.46) 
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with 

A™(Aia, A2a) = a/j1X2 J'm{X\a) Hm(X2a) - a/z2Ai Jm(Xia) H'm{X2a), 

^™{^\a,X2a) = ae1A2J4 l(Aia)Fm(A2a) - ae2X1Jm{Xia) H'm(X2a), 

(7.47) 

X2 = k2-k2, kf = ei^iOj2, i = l,2, m = 0 ,±1 , ± 2 , . . . . (7.48) 

The indices TE and TM refer to transverse electric and transverse magnetic 
modes, and will be explained further below. For given k and m, (7.45) has 
an infinite sequence of roots u>mn(k), n = 1,2,..., these frequencies being 
the same inside and outside the cylinder. In view of this the Casimir energy 
per unit length (7.43) can be rewritten as 

1 f° 
2 7-( 

dk_ 

2TT J2 J2^mn^~Umn^^ (7-49) 
m = — oo n~l 

where comn(k) stands for the uniform medium subtraction referred to above. 
We next represent the formal sum in (7.49) in terms of the contour 

integral [264]§ 

OO 

I / — n.fc. 

£ = 
1 [°° dk ^ 1 1 f fm(k,LO,a) 

The integration in (7.50) is carried out along a closed path C in the complex 
u> plane which consists of two parts: C+ which encloses the positive roots of 
Eq. (7.45) in a counterclockwise sense, and C_ which encircles the negative 
roots in a clockwise sense. Therefore, we face the task of investigating the 
analytic properties of the function fm(k, u>, a), which specifies the frequency 
eigenvalues. Generally this is a problem of extreme difficulty. Therefore, in 
the next two sections we shall consider specific simple cases. 

The method of calculation of the Casimir energy proposed above can 
be straightforwardly generalized to dispersive media. To this end, it is suf­
ficient to treat the parameters Ci and / / j , i = 1, 2 in the frequency equation 
(7.45) as given functions of the frequency w. However, we will not address 
this issue in the present section. 

§The result (7.50) may be easily shown to be equivalent to the corresponding Green's 
function formulation. See Appendix A. 
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7.2.2 Casimir Energy of an Infinite Cylinder when ei/iti = 

e2H2 

We now assume that the permittivity and permeability of the cylinder 
material (ei fix) and of the surroundings (e2, ^2) are not arbitrary but satisfy 
the condition 

exfix = £2M2 = c~2, (7.51) 

where c is the light speed in either medium (in units of the speed of light 
in vacuum). The physical implications of this condition can be found in 
Refs. [265, 266, 267, 205, 268, 269]. When (7.51) holds, we have Aj = A2 = 
A, and the frequency equation (7.45) is simplified considerably. It breaks 
up into two equations: for the transverse-electric (TE) oscillations 

A™(A,a) HE Xa \^J'm{Xa)Hm{Xa) - mJm{Xa)H'm{\a)) = 0 (7.52a) 

and for the transverse-magnetic (TM) oscillations 

A ™ ( A , a ) = Xa [exJ'm{Xa)Hm{Xa) - e2Jm{Xa)H'm{Xa)\ = 0. (7.52b) 

In the general case (7.46) such a decomposition occurs only for oscillations 
with m = 0. In (7.52a) and (7.52b) A is the eigenvalue of the corresponding 
transverse [membrane-like] boundary value problem [270] 

A2 = %r - k2 . (7.53) 

Classification of the solutions of Maxwell's equations without sources in 
terms of the TE- and TM-modes originates in waveguide theory [184, 270, 
99]. The main distinction of the propagation of electromagnetic waves in 
waveguides, in contrast to the same process in unbounded space, is that a 
purely transverse wave cannot propagate in a waveguide. The wave in a 
waveguide must necessarily contain either longitudinal electric or magnetic 
fields. The first case is referred to as the waves of electric type [transverse-
magnetic (TM) waves] and in the second case one is dealing with waves of 
magnetic type [or transverse-electric (TE) waves]. As we have seen, this 
classification proves to be convenient in studies of electromagnetic oscilla­
tions in closed resonators as well. 

Replacing the function fm(k,u>,a) in (7.50) by the left hand sides of 
(7.52a) and (7.52b) and changing the integration variable to A we arrive at 
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c_ c> + 

ik 

-ik 

Fig. 7.1 Contour of integration C" = C'+ + C'_ in (7.54). 

the following representation for the Casimir energy per unit length 

£ = 
dk sr-^ 
7^- 2^, 2?r 

1 1 
2^i2 

\ A 2 + k2 dx In 
c 

A™(\a)A™(\a) 
A T E ( o o ) A ™ ( o o ) 

(7.54) 
Here we have distorted the contour of integration to C = C'+ + C'_, as 
shown in Fig. 7.1. We take C'+ to consist of a straight line parallel to, and 
just to the right of, the imaginary axis (—zoo, +ioo) closed by a semicircle 
of an infinitely large radius in the right half-plane. C'_ similarly is a line 
parallel to, and just to the left of, the imaginary axis, closed by an infinite 
semicircle in the left hand plane. On both semicircles the argument of 
the logarithm function in (7.54) tends to 1. As a result these parts of the 
contour C" do not give any contribution to the Casimir energy 5. When 
integrating along the imaginary axis we chose the branch line of the function 
(/5(A) = \/A2 + k2 to run between — ik and ik, where k = +vk2 > 0. In 
terms of y — Im A we have 

<p(iy) = < ±\fk2 

isjy2 -k2, y>k, 
y2, \y\ < k, 

i^/y2 - k2, y < -k, 
(7.55) 

where the sign on the middle form depends on whether we are to the right 
or the left of the cut. Thus contributions to (7.54) due to the integration 
along the segment of the imaginary axis (—ik, ik) cancel between C'+ and 
C'_, and (7.54) acquires the form 

£• = 
OO 

2TT 2 ^ 
m= — oo 

dk ^TZY2d l n A £ E ( ^ ) A ™ ( ^ ) 
y/y dy A T E ( j o o ) A T M ( i o o ) 

(7.56) 
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Changing the order of integration of k and y and using the value of the 
integral 

j V dk Vy2 - fc2 = \v2, (7.57) 

we obtain after the substitution ay —> y 

^ r » A ^ ) A T M f a ) 

87ra2 

m—— oo 

Now we encounter the modified Bessel functions Im(y) and Km(y) 
(7.34a), (7.34b) and their asymptotic behavior for fixed m and y —> oo 

Im(y) ~ - £ = , C(2/) - - £ = , (7.59a) 
y/7ry V^nV 

Km{y) ~ y ^ e " ^ , ^ ( y ) ~ " ^ " y - (7.59b) 

With the help of these we derive from (7.52a) and (7.52b) 

A™(tj,) 2y 

A™ fa) 2y 

[Ml^m(y)^m(2/) - V2lm(y)K'm(y)h 

e1I^y)Km(y) - e2Im(y)K'm(y)} • (7.60) 
A ™ ( I O O ) e i + e2 

Making use of all this, we can recast (7.58) into the form 

4y2 0 0 /»00 f 

V / ydylnl- {I'm{y)Km{y)f 
Ana2 ^ J0 l£ + £-1+2 

m= — oo v 

+ (Im(y)K'm(y))2 - (e + e"1) Im{y)I'm{y)Km{y)K'm{y) 

(7.61) 

Here a new notation e = £i/e2 has been introduced, \i has been eliminated 
by the condition (7.51), and when going from (7.58) to (7.61) an integration 
by parts has been done, the boundary terms being omitted. The argument 
of the logarithm in (7.61) is simplified considerably if one uses the value of 
the Wronskian of the modified Bessel functions Im{y) and Km{y) [ i l l] 

Im(y)K'm(y) - Uy)Km(y) = - i . (7.62) 
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oo 

Finally (7.61) acquires the form 

£ = J2 £™> (7-63) 
m= — oo 

where 

y dy In { l - e [y(Im(y)Km(y))f} (7.64) 

with £ = (1 — e)/(l + e). This is a simple unregulated generalization 
of Eq. (7.19) for a conducting cylindrical shell, where £ = 1, [see (7.18)] 
and the cylindrical analog of the spherical form (5.49) for a dielectric-
diamagnetic ball. 

From the asymptotic behaviors given in (7.59a) and (7.59b) it follows 
that the integral in (7.64) diverges logarithmically when y —> oo. At the 
same time the sum over 771 in (7.63) also diverges because for large m the 
uniform asymptotic expansion of the modified Bessel functions gives [i l l] 
[see (7.24)] 

c£2 [°° z5dz 
I ^=£°°. (7.65) m->oo 16na2 JQ (1 + z2) 

Here the change of variables y = mz has been performed. Disregarding 
for the moment that the integral in (7.65) is divergent, we employ here the 
Riemann zeta function technique [271, 272] for attributing a finite value to 
the sum in (7.63), 

£ = = Yl (£m-£°° + £°°) 
m= — oo 

00 00 

= Y, (^-£°°)+ E £ 

m= — oo m= — oo 
00 00 

= J2 £~™+£CO 12 m°> (7.66) 

where £m stands for the "renormalized" partial Casimir energy per length 

£m = £m-£x', m = 0 , ± l , . . . . (7.67) 
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We now have to treat the product of two divergent expressions £°° J2 m ° 
more precisely, by presenting it in the following form 

°L r /2 f°° z5~sr]z 

«-_I>0 = -i3bjfej( ( T ^ M + H 
A ( ; - ! ) P « ' > ' ] 

m= — oo 
i-2 

167ra2 s^o+ \s 4 

c£2 

ln(27r). (7.68) 
167ra2 

Thus, the Casimir energy can be written in the form 

£ = fo + 2 ^ 5 m + ^ 2 l n ( 2 7 r ) , (7.69) 
7 7 1 = 1 

because 

£-m = £m, m = 0 , l , 2 , . . . . (7.70) 

Now we deduce from (7.67), (7.64), and (7.65) that 

_ c f°° ( £2 2/4 1 
^ = W y 0 ^ 2 / { l n [ l - e 2 ^ ( , ) ] + T ( m 2 + y 2 ) 3 | , m = l ) 2 , . . . , 

(7.71) 
while for TO = 0 

£ o = C 

47ra2 fydy {in [ ! - « „ ) ] + ^ J ^ , } , (7-72) 

where am(y) = y(Im(y)Km(y))'• The integrals in these formulas converge 
because for y —* 0 and m / O w e have [ill] 

In this limit 

*o(3/)-»l- (7-74) 

On the other hand, for large y 

^ ( ^ ^ 2 - (7-75) 
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By making use of the uniform asymptotics for the Bessel functions [il l] 
we deduce from (7.71) 

4-KCL2 

10 - 3£2 28224 - 7344£2 + 720£4 , / 1 
960m2 15482880m4 \m6 

' (7.76) 
Thus the Casimir energy given in (7.69) is finite.^ One can advance further 
only by considering special cases and applying numerical calculations. 

7.2.3 Dilute Compact Cylinder and Perfectly Conducting 
Cylindrical Shell 

We begin by addressing the case when ^ 2 C l . Because we are assuming 
the condition ei/Ui = e2/xi = c - 2 , this is not the same situation as a dilute 
compact cylinder with |ei — e2| <ti 1 and fii = fi2 = 1, which we shall discuss 
in Sec. 7.3. Recall that 

£ l - e 2 ^ - ( e i - £ 2 ) 2 (7.77) 
e i + e 2 ; 4e2 ' 

where e = (ei + £2)/2. Retaining in (7.72) only the terms proportional to 
£2 we obtain 

^ w | ydy v4 

y °tty) 
c£ 

4(1 + y 2 ) 3 

(-0.490878). (7.78) 
47ra2 

To estimate £m, m > 0, we can use the leading asymptotic behavior (7.76) 

4TTO2 \96m 2 3840m4 (7.79) 

' A s noted above, this problem has been considered in Ref. [256] using the Green's 
function technique. However, there Brevik and Nyland include dispersion, and supply 
an abrupt frequency cutoff in the dispersion relation, as well as an angular momentum 
cutoff. The results are divergent as the cutoffs tend to infinity. This is similar to what 
Brevik and Einevoll [212] found for a spherical ball with the same type of dispersion 
relation—see Sec. 5.6. There is here, as in the latter case, room for suspicion that 
these divergences are spurious. For example, keeping only a finite number of angular 
momentum modes in the conducting spherical shell problem gives even the incorrect 
sign of the energy. See Sec. 4.1. 
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To a precision of 10~6, we evaluate (7.69) by substituting in the value of 
£0, (7.78), integrating £m numerically for m = 1 , . . . 5, and asymptotically 
using (7.79) for n > 6, with the resultH 

ce 
Ana2 

ce_ 

Ana2 

4-7ra2 

5 oo , 1 7 \ 1 
•0.490878 + 2 £ Sm + £ ^ - ^ ^ + - 10(2.) 

77 i= l m—6 

(-0.490878 + 0.027638 + 0.003778 - 0.000007 + 0.459469) 

(0.000000). (7.80) 

Thus the Casimir energy of a dilute cylinder possessing the same speed of 
light inside and outside proves to be zero! 

Following Klich and Romeo [273], we can obtain this result analytically. 
We use the addition theorem given there 

J2 r2 {[Im{r)Km{r)\'f = / £ [R(r, 0 ) ^ ( i ? ( r , 0))]2 , (7.81) 
m= — oo 

where 

R{r,<j>) = 2r|sin<£/2|. (7.82) 

Thus the Casimir energy of a dilute cylinder is from (7.64) 

°° Oct2 r°° C1 ?/2 

£= J2 £™ = ~^2 dyyl du^^lK^yu)}2. (7.83) 

Here we have made the subst i tut ion u = | sin 0/21. This la t ter integral is 
obviously positive, and divergent. We may regulate it by replacing there 
U3 —+ Vs, which gives a finite integral if Res < 2. The Macdonald function 
may be given by the integral representation [99] 

K1(x)= decosh8e-xcoshe. (7.84) 
Jo 

II The cancellations here are very severe. If the asymptotic approximation were used for 
all ro, a positive result would be found, E ~ (c£2/47ra2)(—0.00108). Unlike for the 
spherical case, doing the integral exactly is essential. 
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The y integral then becomes trivial, and the continued energy is given by 

2c£2r(s + 1) f°° f°° , cosh 9 cosh fl' 

7r2a22 s+i 7 0 i 0 (cosh 0 + cosh 0 ' ) s + 1 

x / d u u ^ ^ l - u 2 ) - 1 ^ . (7.85) 
Jo 

Clearly the integral over 9, 9' is finite for s > 0, but the u integral is 

so if we take this to define the integral for all s, we see tha t it has a zero for 

s = 3. Thus this analytic method of regularization also gives a vanishing 

result (to first order in £2) for the Casimir energy of a dilute dielectric-

diamagnetic cylinder. 

Of course, this vanishing does not persist beyond lowest order. In 

Ref. [274] Nesterenko and Pirozhenko show tha t in order £4 an at tractive 

energy results, 

j ^ - 0 - 0 0 7 6 0 2 ^ . (7.87) 
a 

This zero is to be contrasted with the positive Casimir energy found for 

a dilute ball with the same property given in (5.58), 

5 £2 

£baii = r ^ £ 2 = 0.0497359^-. (7.88) 
327ra a 

It is further remarkable tha t the same zero result is found for a dilute 

dielectric cylinder, t ha t is, one with /u = 1 everywhere and e > 1 inside the 

cylinder, and e = 1 outside, a result which may be most easily confirmed 

by summing the intermolecular van der Waals energies. T h a t calculation 

is given in Sec. 7.3. However, zero is not the universal value of the Casimir 

energy for cylinders, as we now remind the reader. 

Of particular interest is the case when £2 = 1. Wi th c = 1 in our 

formulas it corresponds to infinitely thin, perfectly conducting cylindrical 

shell. Setting £ = 1 and c = 1 in (7.72) we obtain by numerical integration** 

£0 = — ^ r ( - 0 . 6 5 1 7 ) = -0 .05186 4 • (7-89) 
47ra2 a2 

" I n the notation of Sec. 7.1 this is --^^(S + R0 + \ ln27r)—see (7.36a) and (7.36c). 
The In 27r term is cancelled by that in (7.69) here. 
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The sura 2 YL^=i ^« m (7-69) can be found approximately by making 
use of the two leading terms in the uniform asymptotic expansion (7.76) 

2 2-, Sm - 47 ra2 I 48o 1^ TO2 1792 2^ m 
m=\ \ m=l m=l 

1 / 7 7T2 5 7T4 

47ra2 V480 6 1792 90 

1 0.0210 = 0 . 0 0 1 8 ^ . (7.90) 
47ra2 

With higher accuracy (up to 10 5) this sum was calculated in Sec. 7.1 by 
integration of (7.71)^ 

00 _ 1 1 1 1 
2 V £m ~ - 0.0437 = 0.0218 = 0.00174 — . (7.91) 

^ Ana2 2 47ra2 a2 y ' 

Substituting Eqs. (7.89) and (7.91) into (7.69) we obtain for the Casimir 
energy of a perfectly conducting cylindrical shell 

Ecyi. shell = ^ 2 ("0-1704) = -0.01356 ^ . (7.92) 

This is exactly the result first obtained by DeRaad and Milton [24] and 
given in (7.37). It is worth noting here that unlike in that approach the use 
of the C, function technique enables us to dispense with the introduction of 
a high-frequency cutoff function, although the latter is undoubtedly more 
physical. 

Gosdzinsky and Romeo independently computed [243] the electromag­
netic vacuum energy of space divided by an infinite perfectly conducting 
cylindrical surface, to much higher accuracy, but using a rather more elab­
orate zeta-function method. 

Nesterenko, Lambiase, and Scarpetta [275] recently computed the Cas­
imir energy of a semicircular conducting cylinder. They encountered 
divergences, which are not unexpected due to the sharp corners of the 
semicircular cross section [276]. 

t tThis is exactly the same as — * 2 R given by (7.36b). 
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7.3 Van der Waals Energy of a Dielectric Cylinder 

It is now established that for tenuous media the Casimir effect and the 
sum of molecular van der Waals forces are identical [39]. The basis for 
this assertion is the equivalence between the Casimir energy for a dilute 
dilectric sphere (5.83) and the renormalized van der Waals energy for the 
same system (5.107). Here we calculate the latter for a dilute solid cylinder, 
with dielectric constant e ̂  1 in the interior, e = 1 in the exterior, and \x = 1 
everywhere. We follow the procedure given in Sec. 5.9. The van der Waals 
energy for this cylinder is 

vdW --BM2 f dDrdDr'[\r±~r'L\2 +r2+r'2-2rr'cos6]-i/2, (7.93) 

where B — (23/47r)a2, a = (e — l)/4irj\f being the molecular polarizabil-
ity, and M being the number density of molecules. We have regulated the 
integral by dimensional continuation, D being the number of spatial di­
mensions, and 7 being the (inverse) power of the Casimir-Polder potential. 
The following calculation is valid providing D > 7; the final result will be 
obtained by violating this condition, by setting D = 3 and 7 = 7. 

We assume translational invariance in the D — 2 transverse directions, 
so the transverse integral is easy: (L is the length of the cylinder and 
b2 = r2 + r'2 - 2rr' cos 8) 

/

OO 

dD~2r± dD-2r'^ [|r± - r'± |2 + b2]^'2 

-OO 

/

OO 

dD~2r± [r2± + 62p7/2 
-OO 

L I dD-2r± / Mtl/2e_t(rlW) 

T(7/2) J-00 Jo t 

- ^ - ^ / dWl2~le-tb2 / d i e " ' 1 

1X7/2) Jo [J-00 

{L^)D-2{b2)D'2-^2-lT{l,2
n^

 + l)'• (7.94) 

The remaining integral over r, r', 6, 9' is just that given in Sec. 5.9. In 
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(5.106) there, we merely set D — 2 and 7 = 7 — D + 2. The result is 

LD-2 2D-^D/2+l,2T ( a _ & + 1 } r {D _ ,_ + 1) 
- v d W -BHZ 

a-y-o-2 r ( a ) r ( f - a + 2 ) ( j D _ 7 ) 
(7.95) 

This is exactly the result found by Romeo [44]. Now when we set D = 3 
and 7 = 7 everything is finite except for the second gamma function in the 
denominator, which has a simple pole, and thus the van der Waals energy 
vanishes in this case. 

It is very likely that the same zero value is obtained by a direct cal­
culation of the Casimir energy, either through a zeta function, or through 
a Green's function, technique. Yet, because of the intrinsic difficulty of 
cylindrical calculations, that explicit demonstration has not yet been com­
pleted. However, Bordag and Pirozhenko [277] have very recently shown 
that the second heat-kernel coefficient (the residue of the pole of the zeta 
function at s = —1/2) is proportional to (e — l ) 3 , i.e., it vanishes in the 
dilute approximation. In other words, the analog of (7.56) [with the argu­
ment of the logarithm replaced by fm given in (7.46)] is finite in (e — l ) 2 

order. This does not prove that the Casimir energy vanishes in this order, 
but rather that it may be uniquely calculated. Thus, the zero result found 
by summing van der Waals energies must coincide with the Casimir energy 
in order (e — l ) 2 . 





Chapter 8 

Casimir Effect in Two Dimensions: 
The Maxwell-Chern-Simons Casimir 

Effect 

8.1 Introduction 

It has been known for two decades that one can construct gauge theories 
with interesting properties in odd-dimensional spaces. In addition to the 
usual Maxwell-Yang-Mills action for the gauge fields, one can put in a 
gauge-invariant mass term [278, 279, 280, 281, 282, 283, 284, 285]. In this 
Chapter we are interested in the (2 + l)-dimensional Abelian theory for 
which the Lagrangian is 

C = -±F^F^ + ^a>3FapAfl. (8.1) 

In terms of the dual tensor 

F» = e^l-FaP = e^dcAf,, (8.2) 

we can rewrite (8.1) as 

C = ± i ^ + \^A,. (8.3) 

The equations of motion, 

W ^ i ^ + (JLFH = 0, (8.4) 

yield the Bianchi identity 

dMF" = 0, (8.5) 

149 
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consistent with (8.2). Further, we have the constraint 

F ^ = 0, (8.6) 

which says that the theory possesses but one degree of freedom. Obviously 
the equations of motion are invariant under a gauge transformation 

AM - A„ + d^, (8.7) 

while the Lagrangian changes only by a total derivative, 

C^C+^d^F^). (8.8) 

We can use (8.4) to show that the gauge field is indeed massive: 

(-d2 + n2)Fx = 0. (8.9) 

The non-Abelian generalization of the mass term is the Chern-Simons sec­
ondary characteristic. Accordingly, we call the mass term in (8.1) topolog­
ical. 

Although the topological mass term is gauge invariant, due to the struc­
ture of the Levi-Civita symbol it is odd under a parity transformation and 
under time reversal. In contrast to a single, massless, spin-0 excitation in 
the Maxwell theory in 2 + 1 dimensions, the Maxwell-Chern-Simons electro­
dynamics given by (8.1) possesses a single, massive, spin-1 excitation [282]. 
Also, one may compare it with the conventional massive electrodynamics 
given by the Lagrangian 

C=-l-F^F^-l-yL2A»AtM (8.10) 

which has a pair of spin-1 degrees of freedom, and whose mass term, al­
though invariant under P and T transformations, violates gauge invariance. 

Subsequently, there was renewed interest in Chern-Simons electrody­
namics. It has been proposed that such a (2 + l)-dimensional Abelian 
theory may be relevant for the fractional quantum Hall effect [92, 93, 94, 
95, 286, 287, 288, 289, 290, 291] in semiconductors and for high-Tc supercon­
ductivity [96, 97, 98, 292] in copper oxide crystals. The proposals involve 
anyons (with fractional statistics and fractional charges) and Chern-Simons 
topological gauge fields. However, in contrast with the true electromagnetic 



Casimir Effect in 2 + 1 Dimensions 151 

fields, the Chern-Simons fields are not given the conventional Maxwell ki­
netic energy;* consequently, they have no independent dynamics and their 
presence is merely to implement fractional statistics. 

In our work, the Abelian gauge fields are allowed to have the conven­
tional Maxwell action as well as the topological mass term given in (8.1). 
We proposed [30, 31] a new test of the gauge-field sector in such a theory, 
involving the Casimir effect. In Section 8.2, the Casimir force between two 
conducting parallel lines is calculated. We would like to think that our 
results provide a way to measure the topological mass of the "photon" in 
(2 + l)-dimensional spacetime. [Another possibility would be to measure 
the rate of fall-off of the Yukawa force as given by (8.9).] The finite tem­
perature effect is considered in Sec. 8.2.1. Section 8.2.2 contains a brief 
discussion, and a comparison with the case of a massive scalar field. Then 
in Sec. 8.3 we turn to the much more interesting case of the Casimir effect 
with a circular boundary. It is then most convenient to use a curved-space 
formalism. Results for both zero and finite temperature are obtained. Un­
fortunately, although finite results are obtained in the leading asymptotic 
approximation, it appears that the Casimir effect for a circle, for scalar 
or vector fields, is divergent, a subject we will explore more fully in the 
following Chapter. 

Throughout we use the metric (—1,1,1) and the antisymmetric symbol 
e012 = + 1 . 

8.2 Casimir Effect in 2 + 1 Dimensions 

We start with the Lagrangian given by (8.3) supplemented by a source 
term: 

C=^F'iFli + ^F'iAlt + J'iAll. (8.11) 

The energy-momentum tensor for the "photon," 

T"" = F^F" - -g^FxF
x, (8.12) 

is independent of /J since the mass term is topological. But, as we will 
see, the vacuum expectation values of T^v (which determine the Casimir 

* Integrating out the anyon gives the Maxwell term in the effective action, however. See 
Refs. [293, 294]. 
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attraction) do depend on \i. We will compute the Casimir energy from the 
Green's function G^u defined by 

F»(x)= f(dx,)G'"'(x,x,)Jv(x'). (8.13) 

The field equations for FM can be used to yield the equation satisfied by 
the Green's function, 

e"apdaGf3l'(x, x') + /iG^tx, x') + g^5{x - x') = 0. (8.14) 

In terms of the propagator D^u for the AM field given by the time-ordered 
vacuum expectation values 

D^x, x') = i(A^x)Av(x')), (8.15) 

the Green's function can be written as 

G^(x,x') = e»af}d
aD^{x,x') = i(F^(x)Al/(x')), (8.16) 

where we have used (8.2). The expectation values we need to evaluate the 
Casimir energy are 

{F^x)Fv(x')) = ^Xad'xG^(x, x'). (8.17) 

We can choose the coordinate system so that the two conducting lines 
are parallel to the second (y) spatial axis and lie, respectively, onx = 0 and 
x = a, where x denotes the first coordinate. We will use perfect conductor 
boundary conditions so the Bianchi identity (8.5) coupled with the statics 
requirement {3QF° = 0) give 

Fi = 0 (boundary condition). (8.18) 

This is just the statement that the tangential electric field is zero. [See 
Sec. 8.3.1 for further discussion of this boundary condition, in particular 
(8.92).] For the present geometry, it is convenient to introduce a transverse 
spatial Fourier transform together with a Fourier transform in time: 

G"v(x,x') = f^e-Mt-° f^eik^-y^g^(x,x';k,Lu). (8.19) 

The arguments x and x' in G^" refer to three-dimensional spacetime points, 
while those in Q^v refer only to the first spatial coordinates. 
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The expectation values in (8.17) now take the form 

1 d 
(F0F0) = kQ^ + -—g oi _i 

i dx' 
10 , , , /-12 

^02 

i d 

(8.20) 

-.21 (F2F2) = - — g ^ - ^ 
i ox' 

where, for convenience, we have suppressed all the (obvious) arguments. It 
follows from (8.12) that the stress tensor component T1 1 is given by 

Tki(x) lim 1-F°(x)F°(x') + 1-F\x)FHx') - \F\X)F\X>) 

(8.21) 

so the vacuum expectation value of the stress tensor for a given frequency 
UJ and wavenumber k is 

(tn) = lim 

(8.22) 

where the limit x' —> x is to be taken symmetrically. 
Our task is to solve for the various Green's functions. With the aid of 

(8.14) and (8.19) we see that three of them satisfy the system of equations 

ikg01 + ng11 - itog21 = s(x - x1), 
' l i d 721 (8.23) ^g^ + ikg1 , 

ox 
-^01+i^ll+^g21 = o. 

It is not hard to combine these equations to find the equation for g11: 

( - g ^ * ^ . - ^ ) „»=(„-I£),(*-•,, (8.24) 

or, for ^ n = g11 - kS(x - x'): 

-£>+#+*-<*)?» k2 

-5{x-x'). (8.25) 

Actually in the calculation of the Casimir energy, for which we take the limit 
x' —> x, the 5 functions are irrelevant so that g11 and g11 are effectively 
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the same. Let 

-A 2 = k2 - u? 

then a standard calculation gives 

V2 = K2; 

G1L = 
2 - / x 2 (ss) 
Xfi sin Xa' 

.26) 

.27) 

where we have used the perfect conductor boundary conditions, (8.18). Also 
we have made use of the first of the following notations, as introduced in 
Sec. 2.6: 

(cs) = 

(3C) = 

(ss) = sin Xx< sin A(rr> —a 

cos Ax sin X(x' — a 

sin Ax' cos A (x — a 

sin Ax cos A (2/ — a 

cos Xx' sin A (x — a 

(ec) = cosAx< cosA(x> — a) 

if x < x', 
if x > x', 
if x < x', 
if x > x' 

.28) 

with x> (x<) being the larger (smaller) of x and x1. 
With the aid of (8.23) we can calculate Q21 from Q11 using 

--11 

k2 + n2 ILO 
fi ax ' 

(8.29) 

where we have dropped irrelevant 5 functions. Writing Q21 as a linear 
combination of the terms in (8.28) we easily find 

gzl = — -(SS) + -(CS) 
sin Xa 

In the same way, we can calculate Q01 from 

d 
-iuj^- + ik^)g0l = {uj2-^2)gl\ 

yielding 

-.01 
sin Xa 

-{ss) + -(cs) 

.30) 

(8.31) 

(8.32) 
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Next, we deal with the equations satisfied by G20, Qw, and G00: 

^ o o + i f c e 1 0 - ^ 2 0 = -8(x-x'), 

ikG00 + nGw - ILOG20 = 0, 

-?-G00 + ^u>Gw + »G20 = 0, 
ox 

.33) 

from which follows 

We find 

£ > 1 0 = K ^ - * > < — • > • <"4> 

'10 
i sin Aa 

From this we can compute G20 using 

LO d 

fc 9a; + fi)G-
'20 

sfc 9a; 
• iui ) G 

'10 

which gives 

1 
2 2N • x -J^(ss) + k2(cs)+io2(sc) + (cc) 
z — [iz) sin Aa [ A P 

(8.35) 

5.36) 

(8.37) 

Noting tha t Gw <-> £/01 under complex conjugation plus (sc) <-» (cs), we 
are led to guess from G20 and C/21, respectively, 

GU2 = 

and 

(K;2 — ji2) sin Aa 

'12 

-^-(ss) + k2(sc)+w2(cs) + (cc) 

1 

i sin Aa 

w / x k , x 
X ( S S ) + - ( S C ) 

(8.38) 

(8.39) 

We successfully confirm our conjecture by checking the required identities 

given by (8.14). 

We can now insert the various Green's functions into (8.22) to find 

d 
(t"(x)) lim 

1 

2i sin Aa dx 
_ [(sc) _ (CS)] + 

2 i sin Aa /i 
[(sc) - (as)} 

u 1 
+ -2 i sin Aa [i 

\(sc)~(cs)\\. (8.40) 
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The second and third terms do not contribute because (8.28) implies 

lim ((sc) - (cs)) = 0. (8.41) 
x'—*x 

For the first term we use 

lim -——(sc) = — AsinAxsinA(x — a), 
I ' - > I OX' 

lim -—{cs) = AcosAxcosA(a: — a), (8.42) 

to give 

iA 
( t n ) (0 or a) = — cotAa. (8.43) 

This is exactly the same form as for a massless scalar (2.24), except that A 
now incorporates the mass, according to (8.26). This is the flux of momen­
tum incident on the conducting lines, in terms of which the Casimir force 
per unit length is given by 

Force/length = T = J g J g <*n>. (8.44) 

It is, as usual, convenient to change to Euclidean variables 

to —> i(, A —> in, (8.45) 

so that from (8.26) 

K' = kz + C +M , (8-46) 

and from (8.43) 

<«">(0ora) = l « 1 + (8.47) 
p2Ka 1 

Omitting the constant term (as usual in Casimir calculations^) we get 

[d(dki 2K I f 0 0 , K ,„ „. 
F = i

 IT-TTT;^ 7 = —z~ KdK-^ (8.48) 
J 2TT 2TT 2 e2Ka - 1 2?r J^ e2Ka - 1 y ' 

^As usual, such a constant is omitted because 1) it may be regarded as a contact term, 
2) it would be cancelled by the contribution from the exterior fields, and 3) it would be 
present even if no "plates" were present. For example, see Ref. [11] and Sec. 2.3. 
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or 

?•• 
i r°° v2 

^L*^i- ("49) 
167ra3 .l2fl 

an attractive force (which, one recognizes, has the form of a Debye func­
tion). This is exactly what we obtained for a massive scalar in d = 1 
transverse directions in Section 2.4, see (2.54). Of course, then the mass-
less limit corresponds to the d = 1 version of (2.35): 

• ^ = 0) = " ^ C ( 3 ) , (8.50) 

which follows from (2.34). The large mass (/j,a ^> 1) limit is given by 

^ « - — ^ ( 2 / u 2 o 2 + 2//a + l )e - 2 ^ a . (8.51) 
ana6 

As a check, let us supply another derivation of this Casimir force, which 
employs the 00 component of the stress tensor, that is, the energy density, 

T00(x) = lim I (F°(x)F°(x') + F1{x)F1{x') + F2(x)F2(x')) . (8.52) 
x'—»x 2 

The calculations are similar to those for tn; we find the same form given 
in (2.39) 

/V°>( 
Jo 

1 J 2 

x) dx = —w:0,—- cot Xa + (independent of a). (8.53) 
L% A 

The energy per unit length is 

< = ' / i s j f «"><*>* 
1 f°° v2 u2 f°° 1 

so that the force per unit length is 

d£ 1 f°° , y2 

which agrees with (8.49). 
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8.2.1 Temperature Effect 

The temperature dependence can be included by the replacement (/? = 
1/kT) 

C - C . = ^ , (8.56) 

just as in Sec. 2.5, so that 

-T 2 /" 
T1 = ——„ > ' / * 

o - - 1 

where y^ = 4:/j,2a2 + 16ir2n2a2/[32 and where the prime in the summation 
means that the n = 0 term is counted with half weight. We can consider 
two simple limits of (8.57) just as in Sec. 2.5. We will content ourselves here 
by writing down the high-temperature limit (T —> oo or j3 —> 0), where the 
dominant term comes from n = 0 (n ^ 0 terms are exponentially small), 
yielding 

^ K
 ~IT^23(2(M), /?«47ra, (8.58) 

where 

»<"-r*5^i^3 (8'59) 
is a monotonically (and rapidly) decreasing function, with g(0) = ("(2) = 

£ ~ 2s(2). 

8.2.2 Discussion 

In this section we have made a thoroughly consistent calculation of the 
Casimir effect between parallel lines for the (2 + l)-dimensional Maxwell-
Chern-Simons Abelian gauge theory. We see the result is exactly the same 
as for a massive spin-0 particle. We can have a qualitative understanding 
of this agreement as follows. Recall that, like the massive scalar field, the 
topologically massive spin-1 field obeys the Klein-Gordon equation (8.9) 
and it has only one polarization degree of freedom. The boundary condition 
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Fi = 0, (8.18), is the Dirichlet condition that completes the analogy with 
the massive scalar case. So the agreement of the respective Casimir forces is 
perhaps not surprising, but hardly obvious. This agreement does not persist 
for other geometries; for example, in (3 + l)-dimensional electrodynamics, 
the Casimir force between perfectly conducting parallel plates is twice that 
of a scalar field, as we saw in Sec. 2.6, but such is not the case for a spherical 
shell, treated in Sec. 4.1. 

What about the case of massive, gauge-noninvariant electrodynamics 
given by (8.10)? This case is also considered in Ref. [82]. However, the 
situation is not completely clear. For one thing, the question of boundary 
conditions is subtle [82, 295, 296]. And then there is the issue of polar­
ization degrees of freedom [297]. Presumably the additional polarization 
state for (conventionally) massive vector fields contributes no Casimir en­
ergy because it is found to decouple in the \i —> 0 limit. But we do not 
know for sure whether the two theories given by (8.1) and (8.10) give the 
same Casimir energy or not. In any case, one should have a certain bias 
against gauge-noninvariant theories. 

8.2.3 Casimir Force between Chern-Simons Surfaces 

Bordag and Vassilevich [298] consider 3 + 1 dimensional electrodynamics 
with a Chern-Simons mass term on the 3-dimensional bounding surface. 
The latter gives rise to nontrivial boundary conditions and, in the approx­
imation that the Chern-Simons term is fully described by this boundary 
condition, they calculate the Casimir energy for the case of parallel plates 
when the charges (Chern-Simons masses) are different on the two plates. 
They find the energy per area to be 

where the deviation from the Dirichlet scalar result depends on a function 
h of the phase 

5 = t a n - 1 \i\ — t a n - 1 fi?. (8.61) 

h(S) is a function with period ir, with 

h(0) = l, h(Tr/A) = -^-, h(n/2) = -7-; (8.62) 
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the latter case corresponds to the interaction of a Dirichlet plate with a 
Neumann plate (cf. Sec. 2.6.1). 

8.3 Circular Boundary Conditions 

Now we wish to consider the same system bounded by a circle. The original 
analysis of this case was carried out in Ref. [31]. It is most convenient for 
this purpose to reformulate the theory in curvilinear coordinates. The 
Lagrangian for the Maxwell-Chern-Simons theory written in curvilinear 
coordinates is 

£ = -V=g\F^F^ + ipe^FvpA^ (8.63) 

where g is the determinant of the metric gM„ and 

e^P = y/^e^13 (8.64) 

is a tensor density. In terms of the dual tensor 

Fx = \eXa^Fal3 = -^e^idaAf, - O0Aa), (8.65) 

we can rewrite (8.63) as 

1 < V A P , „ F A £ = j V=9(F A-?A + nF*Ax). (8.66) 

Varying C with respect to A^ we find the equations of motion 

e^daF0 + nV=9F» = 0, (8.67) 

which satisfy the Bianchi identity 

aM(v/=?F") = 0, (8.68) 

consistent with (8.65). We can identify /J, as the mass of the gauge field by 
using (8.67) to show that in Cartesian coordinates 

(-dxdx + i?)Fv = 0. (8.69) 

The equations of motion (8.67) are obviously invariant under a gauge trans­
formation, while the Lagrangian changes only by an irrelevant total deriva­
tive. All of this generalizes the flat-space analysis of Sec. 8.1. 
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In the previous section we considered the Casimir effect between parallel 
conducting lines in two spatial dimensions for the Maxwell-Chern-Simons 
theory defined by (8.67). At zero temperature, we found an attractive force 
per unit length given by (8.49), while the high temperature limit was given 
by (8.58). In this section we turn to the case of a circular boundary. In Sec. 
8.3.1 we compute the Casimir self-stress starting with the reduced Green's 
functions, both inside and outside the conducting circle. The representa­
tion of the product of two fields at a point is obtained by allowing the two 
field points in the Green's function to become infinitesimally close. A for­
mula for the force on the circle is obtained in terms of Bessel functions. In 
Sec. 8.3.2 uniform asymptotic expansions for the Bessel functions are used 
to attempt to obtain approximate numerical results for zero and nonzero 
values of the Chern-Simons mass /J,. In Sec. 8.3.3 we examine this effect 
in the limit of high temperatures. Physically, to obtain a(n effectively) 
two-dimensional system, one needs to freeze the degrees of freedom in the 
third direction perpendicular to the two-dimensional plane. According to 
quantum mechanics, it takes a finite amount of energy to excite the mo­
tion in the third direction. So, if the temperature is low enough, all the 
particles will remain in the ground state for those degrees of freedom and 
the system behaves as if there were only two spatial directions. Implicit in 
our discussion of the high-temperature limit in Sec. 8.3.3 is the assumption 
that the temperature is sufficiently low so that the degrees of freedom in the 
perpendicular directions are not excited. However, the high-temperature 
result for the (2 + 1) theory is of field-theoretic interest in its own right. In 
Sec. 8.3.4 we give a brief discussion, and a comparison with the massless 
(3 + l)-dimensional Casimir effect for a cylinder, see Sec. 7.1. For that 
comparison, we also need the result of the (massless) scalar field case for 
the circle, the derivation of which is given in Sec. 8.4. The work described 
in this section was originally published in Ref. [31]. 

8.3.1 Casimir Self-Stress on a Circle 

We can rewrite the Lagrangian in (8.66) in terms of the fundamental vari­
able An as 

£ = ~-^=gx^Xa/3e^TdaA0daAT + \^aPdaApAx. (8.70) 
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Note that the last term is independent of gM„. Varying the Lagrangian 
(8.70) with respect to g^, 

5C = \b9tiVT»\ (8.71) 

we find 

T"" = y/^{FlxFu - ^g^FxF
x) (8.72) 

for the stress tensor density for the photon, where we have used 5yJ—g = 

Next, we introduce the propagator D^u for the A^ field according to 

A„{x) = f dx' ^-g(x')D^(x, x')Jv{x'), (8.73) 

where J„ is the source for the A^ field. Equivalently, D^ is given by 
the time-ordered vacuum expectation values as in (8.15). Similarly, we 
introduce the Green's function G^ according to 

F^x) = J dx' ^-g(x')G^(x,x')Ju(x'). (8.74) 

The equations of motion (8.67) imply that G^v satisfies the equation 

e/xdvGx
a + nGf = —±=gfl

a6(x - x'), (8.75) 

where e / A = g,J,pe(}uX/y/^g. Eqs. (8.65), (8.73), and (8.74) can be used to 
show that 

(?„„(*, x') = -^=e^daDp„(x, x1) (8.76) 

or, with the help of (8.15), 

Gli„(x,x') = i(Ffl(x)A„(x')). (8.77) 

The vacuum expectation value of the stress tensor can now be put in 
terms of the Green's function by using 

i{F»{x)F»{x')) = -L=e^d'a(F^x)Af3(x')) 
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= _ * - / ^ G ^ ^ z ' ) , (8.78) 
V-9' 

where g' = g{x'). We then have 

(Ta/3) = lim -(e^d'Ga
a - \ga? g^d^G^), (8.79) 

x'—*x I Z 

where the limit x' —> x is to be taken symmetrically. For the problem at 
hand we use polar coordinates, 

x» = (t,r,6), (8.80a) 

so that the metric is given by 

(fc„ = ( - l , l , r 2 ) , V=9 = r- (8.80b) 

Then the (T11) component is given by 

We further introduce the Fourier transform appropriate to the polar coor­
dinates: 

G/(x:x') = y ^ V ^ - * ' ) f ; e i m ( e -* '>S/ ( r , r ' ) , (8.82) 

where we have suppressed the dependence of the reduced Green's function 
Q on m and w. The Fourier transform of (8.81) is 

, i i , m 

(Si° - 6,') - | W + &') - j . (£-•*«,» + A f e» 

2 

TO . 

2~ 

83) 

where the limit r' —> r is understood, and we have suppressed all the 
(obvious) arguments. Henceforth, unless stated otherwise, by Q we mean 
G(r,r'). 

We now must solve the Green's function equation (8.75) for the various 
components which appear in (8.83). The corresponding equations for the 
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reduced Green's functions fall into three groups. The first involves the o°, 
i°, and 2° components: 

- ^ 2 ° + ^ V + ^ o ° = - ^ ( r - r O , (8.84a) 

— 9 o 0 + -G20+nGi° = 0, (8.84b) 
r r 

-iujrGx0 - r-^Qo0 + vG2° = 0. (8.84c) 

We combine these equations to find the second-order equation satisfied by 
r. o. 
yo • 

( d2 Id m2 , 9 \ „ n w 2 — M2 r, 

( ^ + r^-^+-a-MaJ&° = - ^ f^ - r ' ) . (8.85a) 
From Go0 we can determine the two other Green's functions according to 

G2° = o t Go0, 8.85b 

<?i° = - — < 7 o ° - - & 0 . (8.85c) 
fir fir 

Similarly, the o1, 11, and 21 components of (8.75) are 

— T T ^ 1 + —Gil + vGo1 = 0, 8.86a 
r or r 

—Go' + ^ + v G i 1 = -^-S(r-r% (8.86b) 
r r 2nr 

-iurGi1 - r-^Go1 + VG21 = 0, (8.86c) 

which can be combined to yield 

d2 1 d 
dr2 r dr 

Grl = 

G2' = 

r2 J 2nfir \ r dr J 

1 (imfi | VJ9)G1 M 5(r-r') 
u)2 — /J,2 \ r ' dr J *v 2-Kr fi2 — UJ2 ' 

m „ , ifir „ , i ., ,, 
Go^— Gil + — S(r-r'). 

(8.87a) 

(8.87b) 

(8.87c) 

Henceforth, we will ignore the 5 functions in (8.87b) and (8.87c) because 
we are interested in the limit r —* r'. 
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Finally, the o2, i2 , and 22 components satisfy 

- - | ~ e 2
2 + — Si2 + ^ o 2 = 0, (8.88a) 

r or r 

—g0
2 + -g22 + vGi2 = o, (s.ssb) 

r r | f t > + rifc' = - J L . -iwrai2 - r—So 2 + ^ 2 2 = - 5 — « ( r - r ' ) , (8.88c) 

which can be combined to yield 

' d2 l _ ^ _ r r r 
Qr2 r Qr r2 

d2 Id m? 2 2 \ 2 _ / m 1 9 \ 1 , 
a_9. „ a„ „5 y ^ ^ r2 r dr J 2itr 

(8.89a) 

*• = - ^ (™+«41 « » 2 + ^ r l , . <«•««» LJ2 — fi2 \ dr J 2-irr(u>2 — fi 

iu> g1
2^ = -—g0

2--g2
2. (8.89c) 

fir [ir 

Again we ignore the 6 function in (8.89b) in what follows. 
We solve these equations for the reduced Green's functions subject to 

perfect conductor boundary conditions at r = a. That is, the tangential 
electric field must vanish on the circle, or in terms of the dual field, 

Fi = Fr = 0 at r = a. (8.90) 

It is interesting to note that this is precisely the condition necessary to 
ensure the gauge invariance of the Lagrangian (8.66). That is, the mass 
term 

i/x f dxy/^FxAx (8.91) 

is gauge invariant only if we neglect the surface term [see (8.68)] 

^fdx^^FxdxA=^fifdSx^^FxA = 0, (8.92) 

which is true if the normal component of Fx vanishes on the bounding 
surfaces. 
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We begin by solving the system of equations (8.85a)-(8.85c). The solu­
tion to (8.85a) is 

A2 

Go0 = - — J m (Ar < )F m (Ar > ) + AJm{\r) + BHm{Xr), (8.93) 

where A2 = cu2 — p?. The constants A and B are to be determined by the 
boundary condition (8.90). When we insert (8.93) into (8.85b) we find 

<?2° = ^(HJ)(r,r') - ^-[AJm(Xr) + BHm{Xr)}, (8.94) 

where we have introduced the abbreviations 

Jm{x) = Jm(x) + ^J'mW, (8.95a) 

Hm{x) = Hm(x) + £ f f l ( i ) , (8.95b) 

and 

W(ry) = {*i*&%r)' rlr>; (8.96) 
^ Jm(Xr')Um{Xr), r > r'. 

When (8.93) and (8.94) are inserted into (8.85c) we obtain 

mA2 

4^t2r L Gi° = ^2 - [ J m (Ar<) f l r
m (Ar>)+ i j m (Ar )+Sf f m (Ar ) ] 

u>2m 
-(HJ){r,r') - AJm(Xr) - Mm(\r)} 

4/i2r 
777 - ~ 

[(HJ)(r,r') + AJm(Xr) + BHm(Xr)}, (8.97) 
4r 

where we have rescaled the constants, 

and have defined 

i = - f A , B = -fB, (8.98) 

LUX 
Jm(x) = Jm(x) + Jm(x) (8.99a) 

mfj, 
2 \ 2 

= ^ Jm(x) - -zJm(x), (8.99b) 

Hm{x) = Hm{x) + H'm{x) (8.99c) 
m/j, 
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-~ Wm(x) -Hm(x), (8.99d) 

(HJ)(r,r') 
Hm(Xr')Jm(Xr), r < r', 
Jm(Xr')Hm(\r), r>r'. 

(8.100) 

Now we are in a position to impose the boundary condition (8.90) on 
Qi°. First, we consider points inside the circle, r,r' < a. From (8.97) we 
see that B = 0 in order that the solution be finite at the origin. Then the 
boundary condition Qi° = 0 at r = a implies from (8.97) that 

A = _n^MJm{Xr% .101) 

from which we deduce the explicit form for these components, for r, r' < a: 

Go0 = 

Gi° = 

X rjTO(Ar<)gm(Ar>) - ^ m ^ " } Jm(Xr) Jm(Ar') 
4ifi 

m 
4r 

Jm(Aa) 

-(HJ)(r,r') + ^ M Jm(\r)Jm(\r>) 

(HJ)(r,r>) - ^ M J m ( A r ) J m ( A r ' ) 

(8.102a) 

(8.102b) 

(8.102c) 

Outside the circle, r, r' > a, we must have outgoing circular waves, so 
A = 0, and the boundary condition C/i° = 0 at r = a implies from (8.97) 
that 

B = - ^ f f m ( H .103) 
Hm{Xa)' 

from which we deduce the explicit form for these components, for r, r' > a: 

Go° = -

02° = 

<?1° = 

\2 r 

4ifi 

mu 
4ifj, 

m 
4r 

^m(Ar<)iJm(Ar>) 
Jm(Aa) 
Hm{Xa) 

Hm(Xr)Hm(Xr') 

<HJ)(r,r>) + £^Hm(\r)Hm(\r') 
rim{Aa) 

(HJ)(r,r')-^^\nm(Xr)Hm(Xr') 
Hm{Xa) 

(8.104a) 

(8.104b) 

(8.104c) 
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Next, we solve the system (8.87a), (8.87b), (8.87c). It is slightly harder 
to solve (8.87a). We write 

Go1 = A±Jm(Xr) + B±Hm(Xr), (8.105) 

where the upper (lower) sign holds if r > r' (r < r'). Equation (8.87a) 
implies that the derivative of Go1 is discontinuous at r = r': 

im 

~2irr' 

while the function itself is discontinuous: 

iu> 

{A+ - A_)Xr' J'm{Xr') + (B+ - B-)\r>H'm{\r'), (8.106a) 

:tion itself is discontinuous: 

7 = (A+- A-)Jm(Xr>) + (B+ - B-)Hm(\r'). 
2-K\IT 

These equations are solved by 

A+- A„ =-Hm{Xr<l 

771 

(8.106b) 

(8.107a) 

(8.107b) 

Inside the circle, r, r' < a, we have B_ = 0 and the boundary condition 
given through (8.87b) implies 

B+Hm{Xa) + A+Jm(Xa) = 0. 

Solving these equations gives, for r, r' < a: 

(JH)(r,r') + ^ M j m ( A r ) J m ( A r ' ) Go1-

Qi1--

G21-

m 
' 4T7 - ( J 

zm2/x 
4X2rr' 

m2u> 
4X V 

3.108) 

(8.109a) 

-Jm(Ar<)Wm(Ar>) + 1^Mjm(Xr)Jm(Xr') 
Jm(Xa) 

-\HJ](ry) + ^ M j m (Ar ) Jm(Ar ') 

Here we have introduced the abbreviations 

and 

nm(Xr')Jm(Xr), r<r', 
[HJ}(r,r') = 

Jm(\r')Hm(Xr), r>r'. 

(8.109b) 

(8.109c) 

(8.110) 

(8.111) 
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Outside the circle, r, r' > a, A+ = 0 and (8.87b) implies 

B„Hm(\a) + A-Jm{Xa) = 0. (8.112) 

So now the solution to the system (8.87a)-(8.87c) is, for r,r' > a 

(JH)(r,r') + ^ M # m ( A r ) W m ( A r ' ) l ) (8.113a) 

- Jm(Ar<)Hm(Ar>) + ^£±Hm(Xr)Hm(Xr') 

Go1-

Gi1-

G21--

m 
= ir7 - ( J 

im2fi 

iX2rr' 

m2u> 
4A 2r/ 

-[HJ](r,r') + ^ M ^ m ( A r . ) K m ( A r ' ) 
nm(Aa) 

(8.113b) 

(8.113c) 

The system (8.89a), (8.89b), (8.89c) is solved in just the same way. The 
result is, inside the circle (r,r' < a): 

Go" 

G2
2 = 

Gi2 = 

imu) 

4/j.r'2 

4/xAV2 

4A2rr'2 

-(JH)(r,r') + ^ M ^ m ( A r ) l 7 m ( A r ' ) l , (8.114a) 

-Jm(Ar<)Wm(Ar>) + 'hp^-Jm{Xr)Jm{Xr') 
Jm{^a) 

•[JH](r,r') + ^ # 4 ^ ( A r ) J m ( A r ' ) 
Jm(Aa) 

(8.114b) 

(8.114c) 

and outside the circle (r, r' > a) 

Go2 

G2
2 = 

Si2 = 

Afir'2 

Ajj,\2r''-

iX2rr'2 

(JH)(r,r') + ^p-Hm{\r)Hm{\T')\ , (8.115a) 

- Jm(Ar<)7Ym(Ar>) + §^-Um{Xr)Hm{Xr') 
Hm(Xa) 

-{JH](r,r') + ^^\nm(Xr)Hm(Xr') 

where 

(JH)(r,r') 
f Hm{Xr> 
I Jm(Xr') 

)Jm(Xr), r <r' 
)Hm(Xr), r>r 

, =(HJ)(r',r) 

(8.115b) 

(8.115c) 

(8.116) 
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and 

[JH}(r,r>) 
)Jm(Ar), r<r' 
)Hm(\r), r>r' 

[HJ](r',r). .117) 

Note that there are only six independent Green's functions because of 
the following symmetry relations between them: 

r ' 2Si 2(r , r ' ) 

r'2g0
2(r,r') 

Gol(r,r') 

G0°(r,r') 

GiHr,r') 

r'2G22(r,r>) 

= -G2l(r',r), 

= -G2°(r\r), 

= Gi°(r',r), 

= <5oV,r), 
= Gi1(r',r), 

= r2G22(r',r). 

(8.118a) 

(8.118b) 

(8.118c) 

(8.118d) 

(8.118e) 

(8.118f) 

Using the above symmetry relations we can write the expression for the 
vacuum expectation value of the rr component of the stress tensor (8.83) 
as (recall that the limit r' —> r is understood) 

« " > - * ( & ' " * ' • 

d 

~dr~> 
02° .119) 

for a given m and u>. What we require, in fact, is the discontinuity across 
the circumference of the circle: 

A(tu) = (tll)\ , - ( t n ) | , _,_ 
\ ' \ / \r—r'~a— x ' \r~r ~a-f-

.120) 

From (8.114a), (8.115a), (8.102b), and (8.104b) we find for this discontinu­

ity 

A(*U> 
\2a\Hm(\a) H Jm(Aa) 

Jm(Aa) 

Wm(Aa) 

1 m 
( A ^ 

(Jm(Aa))2 + (J^(Aa))2 

1 
(Xaf 

(Hm(\a))2 + {H'm{\a)f 

(8.121) 

Here, we have used (8.95a) and (8.95b) as well as the Bessel equation 

(zJ'm(z))' = -z 1 - - j - Jm{z) m (8.122) 
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Equation (8.121), when integrated over the frequency u> and summed 
over m, is our general analytic expression for the Casimir stress on a con­
ducting circle: 

0 0 f00 A 

rn=-oo^-°° 

is the total stress on the circle.* [Recall T1 1 is the stress tensor density, so 
a factor of a = \/—5 ° n the surface is already absorbed.] 

8.3.2 Numerical Results at Zero Temperature 

We now turn to the task of extracting a numerical result from the expres­
sion (8.123) and (8.121). To do so, it is convenient as usual to rotate the 
contour of frequency integration, w —> i(, define the dimensionless real vari­
able x by x2 = C2a2 + /"2a2, and introduce the modified Bessel functions 
(7.34a), (7.34b). [For details of the contour rotation see Sec. 4.1.] When 
we explicitly symmetrize between positive and negative values of x (or TO), 
we find the following result: 

S = -
1 1 ^ 1 f°° dx~4 

ST^ i / ax x . 2 2 2 1 2\ 
> —77 / — - j = = \ X - (J. V + 77T) ta2cv

ra^™2^ V*2-M2«2 

; ; [Im{x)K'm{x) + Km{x)I'm{x)\ 
[Im{x) + x2(x2 — n2a2)I£(x)/m2fi2a2] 
[Km(x)Im(x)+x2(x2 - n2a2)K'm{x)I'm{x)/m2^2o2} 

[K2
l(x)+x2(x2-fi2a2)K^(x)/m2^2a2] ' l ' ' 

In the massless limit, ua —> 0, (8.124) simplifies dramatically: 

5 = " W E / 0 dxx-Hx2UX)K'm{x)]. (8.125) 

We consider the TO = 0 and the m ̂  0 terms in (8.125) separately. As 
usual in Casimir calculations, we ignore terms in the integrand of (8.125) 
which are powers of x (contact terras). (Note that a power of x corresponds 
to derivatives of 5 functions in time.) In particular, for the TO = 0 term, 

*We should also be able to derive the result (8.123), (8.121) from the vacuum energy. 
It is easy to do so for /J, = 0, but much more elaborate for /u 7̂  0, so we forgo further 
discussion of this point. 
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we add a contact term to the integrand to make it converge, so that the 
corresponding contribution to the stress becomes 

1 r°° A 
SQ = --—- dxx--\n[2xI1(x)K1(x)}. (8.126) 

Straightforward numerical integration gives the attractive result 

For m ^ 0 we make use of the uniform asymptotic expansions for the 
modified Bessel functions (4.29a) and (4.29b), see Ref. [ i l l ] . The leading 
term gives 

rm{x)K'm{x) ~ - — (l + z2)1/2, (8.128) 

where z = x/m. The corresponding contribution to the stress is 

where the sum is performed according to (7.26), or 

1 _ 7T 

m2 -\- x2 x 

oo 1 7T 1 

2 V — z- = - cothTra; =. (8.130) 

Again, we supply appropriate contact terms, so that this leading m ^ 0 
contribution is 

SLT = -zhL Jh = ~^ (8J31) 

only 16% of (8.127). We should now correct (8.131) by including the next-
to-leading corrections. However, it is not hard to see that these possess 
an infrared divergence, a phenomenon which is associated with the low 
dimensionality of the problem. One might think that this divergence is 
probably spurious: Each integrand in (8.125) is quite accurately repre­
sented by leading term given in (8.128). [Even at m = 1, the maximum 
value of \n(-2x2rm{x)K'm{x){m2 + a;2) -1/2) is less than 7% of the value 
of ln(—x2I'm{x)K'm{x)), and globally the fit is excellent.] This divergence, 
of course, is regulated by the mass //, so we will discuss this point further 
below. 
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<*-> 0.5 

Fig. 8.1 The contribution of m = 0 to the Casimir stress at zero temperature, So, 
given in (8.132). Further graphed is the leading uniform asymptotic approximation to 
the m ^ 0 contributions to the Casimir stress at zero temperature, S L T , g i v e n by (8.136). 
The sum of these contributions is also shown. In each case what is plotted is / = — 2wa2S 
as a function of fia. 

When n ^ 0, the calculation proceeds similarly. We first treat the m = 0 
term, which is easily seen from (8.124) to be the obvious generalization of 
(8.126): 

So dx 
y/i M 

2a2dx 
ln[2i/i(a;)ii:i(i)]. (8.132) 

The results of numerical integration of (8.132) are shown in Fig. 8.1. This 
contribution to the stress decreases rapidly from the massless value (8.127) 
to zero as /j,a —> oo. For m ^ O w e use the uniform asymptotic expansion 
for the modified Bessel functions. Doing so with the general expression 
(8.124) requires only the leading terms for three of the factors there, 

(x)Km(x) 
x2(x2 — yrar) , 

m2fj?a2 I'm{x)K'm{x) 
2n2a2t 

, (8.133a) 
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r 2 / N x2{x2 - fa2) Tl2, , m2z2e2mr> 
£ ( * ) + L 2 „2„2 'CM ~ -2-27 = , ( 8 ' 1 3 3 b ) m2fa2 m fa2t 2-Km 

x2 — fa2) r^,o, x m2z2 ne~2r 

-K (x) ~ 
m2/i2«2 m{ ' faH 2m 

r ^ 2 ^ x*(x2 - fa2) „ a , , m2z2 ne-2mr> 
* - ( * ) + ^ 2 . . 2 „ 2 ^ W ~ , .2„2 , o ^ • ( 8 - 1 3 3 c ) 

(The value of r\ is, evidently, irrelevant here.) The fourth factor requires 
that we go out to next-to-leading order: 

Im{x)K'm(x) + Km(x)I'm{x) ~ - ^ i 3 - (8.134) 

Here, as in (4.30) 

x t = {l + z2y1'2, z = - . (8.135) 
m 

We substitute these asymptotic expressions into (8.124) and carry out the 
sum on m using (8.130), again omitting contact terms. The result is 

<? i i r w y2 l 

2a2 (2TT)2 J2^a ^y2 _ (27r/,a)2 ev - 1 

r2_(2wri + 1 + _u\ 
I y \_y eV-ll) 

3.136) 

This result, of course, generalizes the formula in (8.131). Numerical inte­
gration of (8.136) yields the contribution to the force also shown in Fig. 
8.1. This partial result is extremely interesting, because of the sign change, 
from attractive to repulsive at about fia = 0.27. However, the ra = 0 term 
given in (8.132) and Fig. 8.1 is much larger, so that these terms together 
always give an attractive force. The sum of these two terms is also plotted 
in Fig. 8.1. 

We have, of course, worked out the next-to-leading contributions to the 
force. As noted above, these are finite when /Li ^ 0, but are larger than 
the leading term given by (8.136) and Fig. 8.1 even for large \ia. This is a 
signal that the Casimir effect for a circle is not finite. It now appears from 
the analysis presented in the following Chapter that the two-dimensional 
Casimir effect is inherently divergent. We will discuss possible resolutions 
of this difficulty there. 
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8.3.3 High-Temperature Limit 

It is easy, in principle, to see how to extract the finite-temperature Casimir 
effect. We take the general zero-temperature result (8.124) and replace 
the continuous frequency variable £ by the discrete variable 2irn/f3, where 
/? = 1/feT and n is an integer. That is 

dxxf(x) 
&ir2a2 y—^, 

r n=0 

nf(xn), .137) 

27ran\' 
(fiaf 

1/2 

3.138) 

where the prime on the summation sign means that n = 0 is counted with 
half weight. 

Given the complicated form of the integrand in (8.124), it is hard to work 
out the general temperature dependence in this case. The high-temperature 
limit, however, would seem to be tractable. That is because we anticipate 
that only the n = 0 term contributes when j3 —> 0. Indeed, if n ^ 0, 
xn —> 2-Kan/(3 —^ oo, and the corresponding contribution to S coming from 
(8.124) is 

cT-+oo 1 

"aj3 

a 

E 
oo 

E 
m = — oo n = l 

CO 

E: 
oo n = l 

*m\Xn) **-m\Xn) 

.139) 

where we have used the asymptotic behavior of the Bessel functions. This 
divergent contribution, in fact, should be subtracted off, for the constant 
summand may again be identified with a contact term. 

The high-temperature limit thus arises from the n = 0 term. We will use 
the uniform asymptotic approximation employed in Sec. 8.3.2, and hence we 
will make the replacement (8.137) in (8.132) and (8.136). For the former, 
m = 0, term we have 

c T ^ o o Y^xj-M2xh(x)K1(x)}, x = na, 3.140) 



176 Casimir Effect in Two Dimensions 

< • - , 

0.20 

0.00 

Fig. 8.2 The contribution of m = 0 to the Casimir force at high temperature, SQ^°°, 
given in (8.140). Also shown is the total Casimir stress at high temperature, including 
the leading uniform asymptotic approximation for m ^ 0, (8.141). Plotted is fT^°° = 
—apST~"x as a function of /j,a. 

which is plotted in Fig. 8.2. This attractive contribution equals - l /2a /3 at 
lia = 0, and vanishes as /ja —> oo. For m / O w e have, from (8.136), 

oT—>oo 
°LT a/3 e27TX - 1 nx 

2 

TTX 1 

2-KX — \ \ x = fia. (8.141) 

This repulsive term vanishes both at \ia = 0 and as [ia —• oo, and, 
like (8.136) is rather small compared to Sj^°°. The combined high-
temperature Casimir force S£^°° + 5 ^ ° ° is also plotted in Fig. 8.2. 

8.3.4 Discussion 

The process of quantization automatically leads to unavoidable vacuum 
fluctuations. Usually, the vacuum energy of a medium is irrelevant. But 
the physics changes drastically (i) when a phase transition between two 
states of the medium can occur; (ii) when the medium is the whole uni­
verse and one couples gravity to the vacuum energy (leading to the vexing 
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cosmological constant problem which we will discuss in Chapter 10; or (iii) 
when geometric boundary effects are taken into account. In this Chapter, 
we have studied the effect of vacuum fluctuation in the last case, i.e., the 
Casimir effect. The example of the Casimir effect that we have considered 
is particularly interesting since it is associated with topology, the non-
Abelian generalization of the "photon" mass term being the Chern-Simons 
secondary characteristic. 

In the first section we examined the Casimir effect between parallel 
lines due to the topologically massive photon in the (2 + l)-dimensional 
theory of quantum electrodynamics. We found that the Casimir force is 
attractive and the result is the same as for a massive spin-zero field. The 
agreement of the respective Casimir forces is not surprising since, like the 
scalar field, the topologically massive spin-1 field in (2 + 1) dimensions has 
one (polarization) degree of freedom. We anticipated that this agreement 
would not persist for other geometries. 

In this section we have calculated the Casimir self-stress for a circle. A 
priori, it is hard to guess the sign of the self-stress in this case, since the 
(3 + l)-dimensional analogue of a circle can be a spherical shell (for which 
the stress is repulsive [Chapter 4]) or a cylindrical shell (for which the stress 
is attractive [Chapter 7]). We have found, in fact, the Casimir stress to be 
divergent, although the leading approximations yield results which, at zero 
and at high temperatures, are attractive. We have also found that the 
respective Casimir stresses are not the same for the spin-1 field (8.124) and 
for the spin-0 field (8.160) discussed in the following section, in accordance 
with our expectation. 

Actually, there is a way to read off the Casimir stress for the massless 
helicity-1 field for the circle from that for the cylindrical shell and the result 
for the massless scalar field for the circle. We see this by returning to (8.121) 
and taking the \i —> 0 limit: 

A , ih »A \J"(z) H"(z) 2] 
4TT [J^(Z) H'm{z) z\ 

where z = Xa —> toa and use has been made of the equation of motion and 
the Wronskian (7.17). We can, in fact, read this off directly from Chapter 
7, if, there, we make appropriate (2 + l)-dimensional restrictions. That is, 
we set the momentum k along the cylinder axis equal to zero, and include 
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only Hz, Er, and Eg 

Trr = \(Ul-E% (8.143) 

where the discontinuities are 

A(^) = i~ (%M + J~M) , (8.144a) 2-niz \H'm{z) J'm(z) 

These follow from (7.14a), (7.14b) and (7.11a), (7.11b). This agrees pre­
cisely with (8.142) when we use the Bessel equation (8.122) and recognize 
that here Trr is a tensor density, with y/—g = r. 

Furthermore, in the next section we calculate the Casimir self-stress 
for a scalar field vanishing on a circular boundary, (8.158), which when 
combined with (8.142) yields the form of the (3 + l)-dimensional result of 
(7.19): 

A/ M A/ M iA / J 1 W J'm(z) H^(z) H'm{z) 2 
4TT \J^{z) Jm(z) H'm(z) Hm(z) Z/ 

(8.145) 
Schematically, we write the k = 0, /i = 0 correspondence found here as 

(3 + l)„ = (2 + l)„ + (2 + l ) a . (8.146) 

We can understand this directly from the (3 + 1)„ equation of motion 

d^V^gF^ = 0. (8.147) 

When there is no z dependence, the v = 0,1,2 components coincide with 
the (2 + l)„ equations of motion, while the v = 3 component can be written 
as 

^4+^-4)^=0, (8.148) 
r or or rz J 

subject to the boundary condition A3 = 0, so this is the massless scalar 
problem solved in the next section. And explicitly, the (2 + l ) s contribution 
to the stress tensor is 

Trr = \{H2
e), H0 = ~drA3, (8.149) 
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where 

(A3(x)A3(x'))^-G(x,x') 5.150) 

in terms of the scalar Green's function, or in terms of the reduced scalar 
Green's function (8.152), 

. , 1 d d . 

This is (apart from a factor of a) just the scalar result (8.157). 
No such decomposition occurs when k ^ 0 or when / J ^ O . 

8.4 Scalar Casimir Effect on a Circle 

(8.151) 

Consider a scalar field in (2 + 1) dimensions with a circular boundary of 
radius a on which the field vanishes. We write the Green's function in 
Fourier-transformed form as 

G( x,x') = j dui 

2V 
-iw(t — t' '> J2 eW-^girS), (8.152) 

m = — oo 

where we have suppressed the dependence of the reduced Green's function g 
on m and u>. The reduced Green's function satisfies the differential equation 

/ d2 ld_ 2 _ 2 

\ dr2 r dr 
— g(r,r = - - — 5 ( r - r 

We solve this equation subject to the boundary condition 

g(ay) = o. 

The solution is 

.153) 

3.154) 

r,r' < a : g(r,r') = 
Hm(Xa) 

4i L Jm{\a) 
Jm(Xr)Jm(Xr') - Jm(Ar<)i7m(Ar>) 

.155a) 

r,r' > a : q(r.r') = — v ; 4i 
Jm(Aa) 
Hm(Xa) 

Hm(Xr)Hm{Xr') - Jm(Ar<)#m(Ar>) 

(8.155b) 
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where A2 = J2 — /A Then we calculate Trr from 

,1 
n~i(AL> d^d^-g^-id^dxt + ^cf,2) .156) 

The vacuum expectation value of the product of fields is taken according to 
(2.23). Employing the boundary condition (8.154) we find for the Fourier 
transform for the stress tensor on the circle 

(trr) = ~~^9ir'r%=r'=a- ( 8 - 1 5 ? ) 

Using the solution (8.155a), (8.155b), and the Wronskian (7.17) we find 

A ( * r r ) = —7—. 
4-7TI 

so the stress on the circle is 

J'm{\a) , H'm{\a) 

Jm(Aa) Hm(\a) 
3.158) 

S = 
1 1 

dz 
Aira2 i ./__ Jzi + u2a2 ^ dz 

V ' r" m~ — oo 

J2 -r\nJm(z)Hm{z). (8.159) 

To evaluate this, we perform an imaginary frequency rotation and in­
troduce the modified Bessel functions:^ 

S —^ dx 
™2 J»a 2ira2 ^/x2-^a2

m^oodx 
^2 — \nIm(x)Km(x). 3.160) 

For TO = 0 we can easily evaluate the integral numerically, after we insert the 
appropriate contact term. For example, for fi = 0 we find upon integrating 
by parts that 

3.161) dx ln2xI0(x)K0(x) = 0.0880137, 

corresponding to a very small attractive stress 

0.0140078 
3.162) 

For m / O w e content ourselves with the leading uniform asymptotic ex­
pansion: 

d 
\nIm{x)Km{x) ~ x——2-

dx mz + xz 

§This formula, for p. = 0, was first given by Sen [299, 300]. 

(8.163) 
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We carry out the sum using (8.130) and find 

* L T ~ \ ~ ^ f , ^ - ^ - . (8.164) 

which is a repulsive stress, precisely the negative of the first term in (8.136). 
In particular, at /̂  = 0, we have the negative of (8.131), 

5 L T = ^ , (8.165) 

which overwhelms SQ above. 
This numerical equivalence at /̂  = 0 is no coincidence. It is a con­

sequence of the theorem (8.146), because the (3 + 1)„ result described in 
Chapter 7 has only higher-order contributions in the uniform asymptotic 
expansion. However, going beyond the leading approximation, we find that 
the scalar stress on a circle also diverges, an effect which we shall attempt 
to understand in the next Chapter—see Sec. 9.3. This divergence was 
first noted by Sen [299, 300] twenty years ago. See also Nesterenko and 
Pirozhenko [244], who show the divergence structure, in the zeta-function 
context, for the Dirichlet (D) and Neumann (JV) contributions: 

s ^ 0 : ED ~ — 1 , EN 5—-. (8.166) 
128as' 128as K J 

Clearly this is one area where experimental input would be extremely 
valuable. Do quantum fluctuations destabilize a two-dimensional circular 
boundary? As repeatedly demonstrated in physics, observations will drive 
the theory to make sense of the phenomena. 





Chapter 9 

Casimir Effect on a D-dimensional 
Sphere 

Because of the rather mysterious dependence of the sign and magnitude of 
the Casimir stress on the topology and dimensionality of the bounding ge­
ometry, we have carried out calculations of TE and TM modes bounded by 
a spherical shell in D spatial dimensions [32, 33]. We first consider massless 
scalar modes satisfying Dirichlet boundary conditions on the surface, which 
are equivalent to electromagnetic TE modes. Then, in Sec. 9.2, we treat 
the corresponding TM problem, for modes which satisfy mixed boundary 
conditions. In three dimensions, the sum of these two contibutions (less 
the I = 0 term) yields the electromagnetic Casimir energy found in Chap­
ter 4. Of course, in D dimensions, the number of photon polarization states 
is D — 1, so electromagnetism is not defined off integer dimensions. The 
modes considered in this chapter are smooth functions of D, however. 

Again we calculate the vacuum expectation value of the stress on the 
surface, or the energy density, from the Green's function. 

9.1 Scalar or TE Modes 

The Green's function G(x, t\ x', t') satisfies the inhomogeneous Klein-Gordon 
equation (2.13), or 

( ^ - V 2 ) G ( x , t ; x ' , i ' ) = 5 ( D ) ( x - x ' ) 5 ( i - t ' ) , (9.1) 

where V2 is the Laplacian in D dimensions. We will solve the above Green's 
function equation by dividing space into two regions, the interior of a sphere 
of radius a and the exterior of the sphere. On the sphere we will impose 

183 
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Dirichlet boundary conditions 

G(x,i;x',i') 
|x|=a 0. (9.2) 

In addition, in the interior region we will require that G be finite at the 
origin, x = 0, and in the exterior region we will require that G satisfy 
outgoing-wave boundary conditions at |x| = oo. 

The radial Casimir force per unit area T on the sphere is obtained 
from the radial-radial component of the vacuum expectation value of the 
stress-energy tensor: 

•F=<0|2£ To
rurt|0) (9.3) 

To calculate J- we exploit the connection between the vacuum expectation 
value of the stress-energy tensor Tfll/(x, t) and the Green's function at equal 
times G(x, t;x',t), which follows from (2.23): 

T--
2i 

-G{x,t;x ,t)[n — —-^-jG(x,t;x ,t)out 
dr dr' dr dr' 

(9.4) 

x=x', |x|=a 

To evaluate the expression in (9.4) it is necessary to solve the Green's 
function equation (9.1). We begin by taking the time Fourier transform of 
G: 

/

OO 

dteMt-t')Q^t.x,^ 
-OO 

The differential equation satisfied by Q^ is 

- ^ 2 + V 2 ) a . ( x ; x ' ) = ^ ) ( x - x ' ) . 

(9.5) 

(9.6) 

To solve this equation we introduce polar coordinates and seek a solution 
that has cylindrical symmetry; i.e., we seek a solution that is a function 
only of the two variables r = |x| and 6, the angle between x and x' so that 
x • x' = rr' cos 9. In terms of these polar variables (9.6) becomes 

d2 D-l d 
dr2 r dr 

s in 2 - D e d . D_2ad , n . 

r(^) 
2Tr{D-i)/2rD-isinu-ie 

-S(r-r')6(6). (9.7) 



Scalar or TE Modes 185 

Note that the D-dimensional delta function on the right side of (9.6) has 
been replaced by a cylindrically-symmetric delta function having the prop­
erty that its volume integral in D-dimensional space is unity. The D-
dimensional volume integral of a cylindrically-symmetric function f(r,9) 
is 

rfD=i) J0
 drrD~J0 M»™D-20f(r,e)- (9.8) 

We solve (9.7) using the method of separation of variables. Let 

gu(r,r',0)=A(r)B(z), (9.9) 

where z = cos 6. The equation satisfied by B{z) is then 

B(z) = 0, (9.10) 
d2 _ ., d 

{l-*)^-z(D-l)^+n{n + D-2) 

where we have anticipated a convenient form for the separation constant. 
The equation satisfied by A(r) is 

d2 D- 1 d n(n + D-2) 2 

dr2 r dr r2 A(r)=Q {r^r'). (9.11) 

The solution to (9.10) that is regular at \z\ = 1 is the ultraspherical (Gegen-
bauer) polynomial [il l] 

B(z)=Ci-1+D^(z) (n = 0 , 1 , 2 , 3 , . . . ) . (9.12) 

The solution in the interior region to (9.11) that is regular at r — 0 involves 
the Bessel function [ill] (k = \ui\) 

A(r)=ri-
D/2Jn_1+§(kr). (9.13) 

In Eq. (9.13) we assume that D > 2 in order to eliminate the linearly 
independent solution A(r) = rl~D/2Yn__l+D (kr), which is singular at r = 0 
for all n. The solution in the exterior region to Eq. (9.11) that corresponds 
to an outgoing wave* at r = oo involves a Hankel function of the first kind 

[HI] 

A(r)=r1-D/2Hi
n
1!1+f(kr). (9.14) 

'Recall the discussion in Sec. 4.1. The wave we are considering propagates as e
lkr—iuit^ 

corresponding to the usual causal or Feynman propagator. 
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Using a few properties of the ultraspherical polynomials, namely, or-
thonormality [i l l] 

1
 dz (i - 2r-i/2cn

a\z)cL«\z) = 2 " 2 ^ + 2 " } ^ 
1 n! (n + a)L (a) 

and the value of the ultraspherical polynomial at z = 1, 

Cn (1) = ^rr(2^r ( + h 

(a ^ 0), 

(9.15) 

(9.16) 

as well as the duplication formula (2.33), we solve for the Green's function 
in the two regions. Adding the interior and the exterior contributions, 

w(n, D) 

/

OO 

dco 
-co 

kaJ'Jka) D 
——- + 1 

Ju(ka) 2 

T - - y ^ w(n,D) 

„„.,/- (1)v 
x / dui 

(9.17a) 

kaH^'jka) D 

H?\ka) 
(9.17b) 

and performing the usual imaginary frequency rotation, we obtain the final 
expression for the stress [32]: 

T E w(n,D) 

-2°,^a°+>r(l^) 

Jo 
dx x—-\n{lu{x)Kv{x); .2-D\ 

dx 

Here we have used the abbreviations 

, _., (2n + D - 2)r(n + D - 2) 
w(n,D) = j , 

(9.18) 

(9.19) 

and 

v = n — 1 + 
D 

(9.20) 
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It is easy to check that this reduces to the known case at D = 1, for there 
the series truncates—only n = 0 and 1 contribute, and we easily find 

*=!~55?- (921) 

which agrees with (1.35) and with (2.35) for d = 0 and a —> 2a, and 
corresponds to the Liischer potential of QCD* [83]. 

In general, however, although each x integral can be made finite, the 
sum over n still diverges. We can make the integrals finite by replacing the 
x2~D factor in the logarithm by simply x, which we are permitted to do if 
D < 1 because (N represents a positive integer) 

^ I > + a ) ^ 0 {a<0^^_Ny ( 9 2 2 ) 

t—1 TV. 
71 = 0 

Then the total stress on the sphere* is obtained by multiplying by the area 
of a hypersphere, 

OTTD/2 A- - frbr • (9-23) 

where the integral is 

Qn = ~ dx\n{2xIv(x)Kv{x)). (9.25) 
Jo 

We proceed as follows: 

• Analytically continue to D < 0, where the sum converges, although 
the integrals become complex. 

• Add and subtract the leading asymptotic behavior of the integrals. 
• Continue back to D > 0, where everything is now finite. 

'See also Nesterenko and Pirozhenko [264] for a detailed discussion of the Casimir energy 
of a string, including its temperature dependence. 

•••Note that this result at D = 2 agrees with the n = 0 result in (8.160). The n = 0 term 
appears there with half weight because we must set n = 0 before taking the D —• 2 
limit. 
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We used two methods to carry out the numerical evaluations, which 
gave the same results. In the first method we use the uniform asymptot ic 
expansions to yield 

UTT n 357T 565-7T 
Qn ~ T + 128^ ~~ 3 2 7 6 8 ^ + 1 0 4 8 5 7 6 ^ + ' ' ' ' ( 9 ' 2 6 ) 

Then using the identities 

J2 M , = 0 fori? < 2, (9.27a) 
71=0 

g T(n + D-2)^ =Q fQiD<Qj (g m ) 

n = 0 

we obtain the following expression convergent for D < 4 (further subtrac­
tions can be made for higher dimensions): 

[N-D/2+1] 

y ] w(n,D)Qn 
n—Ci 

D) 
35-7T 5657T 

32768^3 1048576^ _ 
n=\N-D/2+2] 

where Qv = QV — VK/2 — TT/128;/, and the square brackets in the summat ion 
limits denote the largest integer less or equal to its argument. The infinite 
sums are easily evaluated in terms of gamma functions, according to 

=o 

v F(n + q) =W F(«/2) 1 

In the second method we carry out an asymptotic expansion of the 
summand in (9.24) in n, n —> oo 

M ( » , P W . ~ , ° - + ' c - 1 » ' I > - ! ! > . ° -
2 

24D 4 - 176D 3 + 504£>2 - 688£> + 387 n , 
n + . 

192 
(9.30) 

The sums on n in the terms in the asymptotic expansion are carried out 
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according to 

J2nD"k = ((k~D), D-k<-l. (9.31) 
oo 

7 1 = 1 

In this way we obtain the following formula suitable for numerical evalua­
tion: 

S = -^-A -Qo 

1 °° r 1 ^ 

+ f ( ^ T j E *(n,D)-Qn-Y,nD-kCk{D) 
v ' n=l 

1 K l 

+ r(D-i)E c ( f c~D ) c f c ( D )} ' (9'32) 

where the Ck(D) are polynomials in D, where the optimal number of terms 
K chosen depends on D. 

We can use the K = 1 version of this expression to find the stress on a 
zero-dimensional sphere: 

5l»=o = " i < (9-33) 

where we have used the fact that ((z) ~ j ^ - as z —> 1. 
Both methods give the same results [32], which are shown in Fig. 9.1. 

Note the following salient features: 

• Poles occur at D = 2n, n = 1,2,3,. . . . 
• As we will see in the next plot for negative D, branch points occur 

at D — —2n, n = 0,1, 2, 3 , . . . , and the stress is complex for D < 0. 
• The stress vanishes at negative even integers, <S(—2n) = 0, n = 

1,2,3,. . . , but is nonzero at D = 0: 5(0) = - l / 2 a 2 . 
• The case of greatest physical interest, D = 3, has a finite stress, but 

one which is much smaller than the corresponding electrodynamic 

5(3) = +0.0028168/a2. (9.34) 

(This result was confirmed in Ref. [187, 188, 246].) 
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Fig. 9.1 Scalar Casimir stress S for 0 < D < 5 on a spherical shell. 

9.2 T M Modes 

The same kind of calculation can be carried out for the TM modes [33]. 
The TM modes are modes which satisfy mixed boundary conditions on the 
surface [148, 301], 

| ; r D - 2 G ( x , t ; x ' , t ' ) = 0. (9.35) 
|x|=r=a 

In this case when we solve the inhomogeneous Klein-Gordon equation 
(9.1) we easily find the Green's function to be, in the interior of the sphere, 

Qu(rS,9) = f L 2 ^ i f T l } C^Xcose) '-^ 8(irrrl)JJ'z L sin7Ti/ 
n=0 v ' 

x [J^kr^J-vikr*) - f3Ju(kr)Ju(kr')} , (9.36a) 

(f - 1) J-V(ka) + kaJ'_„(ka) 

where 

P-- ( f - 1) Jv{ka) + kaJ^ka) 
(9.36b) 
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and, outside the sphere, 

16(irrr')D/2 

n=0 

where 

7 : 

x [HJ>
1\kr<)Hi2\kr>)-'yHi1\kr)HJ>

1\kr') 

(9.37a) 

( f - 1) Hl2){ka) + kaHi2)'{ka) 

( f - 1) Hll) (ka) + kaH^'ika)' 
(9.37b) 

and v is given by (9.20). 
It is a bit more subtle to calculate the force per area for the TM modes 

than it was for the TE modes. For a given frequency, we write for the 
vacuum expectation value of the radial-radial component of the stress tensor 

<*rr) = \ [VrVr< + w2 - V i • V ± , ] gu, (9.38) 

where, if we average over all directions, we can integrate by parts on the 
transverse derivatives, 

- V ± . V ^ V l - ^ ( n +
r f - 2 ) , (9.39) 

where the last replacement, involving the eigenvalue of the Gegenbauer 
polynomial, is appropriate for a given mode n [see (9.10)]. As for the radial 
derivatives, they are§ 

V r = r 2 - D a r r D " 2 , V r - = r ' 2 - D 0 r , r , - D - 2 , (9.40) 

which, by virtue of (9.35), implies that the VrVr< term does not contribute 
to the stress on the sphere. In this way, we easily find the following formula 
for the contribution to the force per unit area for interior modes, 

TTM l f cfa; v ^ i n\ 

x{x2-n{n + D-2))S-^\, (9.41a) 
Sn\X) 

sin the TM mode, the radial derivatives correspond to tangential components of E, 
which must vanish on the surface. See [301]. 
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and for exterior modes, 

7T(D+l)/22DaD+lT^D__ 
r°° dx^ 

1)/, 7^' 
) JV n=0 

x ( x 2 _ n ( n + j D _ 2 ) ) f ! i M ) ( 9 4 1 b ) 
en(x) 

where w(n, D) is given by (9.19), x = ka, and the generalized Ricatti-Bessel 
functions are 

sn{x) = xDl2-lJv{x)7 en(x) = xD'2~lHix\x). (9.42) 

It is a small check to observe that for D = 2 we recover the known result 
.142) 

^^/>i>^)(|| + f H&\x) 

( 1 ) ' ' s ) , 
(9.43) 

where the half-weight at n = 0 is a result of the limit D —> 2. In two dimen­
sions, the vector Casimir effect consists of only the TM mode contribution. 

In general, we can combine the TE mode contribution, given in (9.17a) 
and (9.17b), and the TM mode contribution, found here, into the following 
simple formula^ 

w(n,D) TTTM+TE _ [ V ^ ujyu,u 
" ^D + l)/22DaD + l Z , T (^ i ) 

It will be noted that, for D — 3, this result agrees with that found for the 
usual electrodynamic Casimir force/area, when the n = 0 mode is properly 
excluded. [See (4.23) with the cutoff 6 = 0.] Of course, this only coincides 
with electrodynamics in three dimensions. The number of electrodynamic 
modes changes discontinuously with dimension, there being only one in 
D = 2, the TM mode, and none in D = 1, in general there being D — 1 
modes. Equation (9.44) is of interest in a mathematical sense, because 
significant cancellations do occur between TE and TM modes in general. 

^We will not concern ourselves with a constant term in the integrand, which we will deal 
later. 
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The integrals in (9.41a) and (9.41b) are oscillatory and therefore very 
difficult to evaluate numerically. Thus, as usual, it is advantageous to 
perform a rotation of 90 degrees in the complex-w plane. The resulting 
expression for !F™ is 

T •TM f D+r(n'D) fdx* 
^ 2 V J * i a S + i r ( £ = ± ) . / o 

X2(3-D) (xD/2-lKv(x)y (xW-lj^y 

n=0 

d 
x—-In 

ax 
(9.45) 

9.2.1 Energy Derivation 

As a check of internal consistency, it would be reassuring to derive the same 
result by integrating the energy density due to the field fluctuations. The 
latter is computable from the vacuum expectation value of the stress tensor, 
which in turn is directly related to the Green's function, Qu: 

(Too) = ^ 
du> 

2TT 
(W2 + V • V ' ) & (9.46) 

Again, because we are going to integrate this over all space, we can integrate 
by parts, replacing, in effect, 

V - V -V2 (9.47) 

which uses the Green's function equation (9.6). [Point splitting is always 
implicitly assumed, so that delta functions may be omitted.] Then, using 
the area of a unit sphere in D dimensions (9.23), we find the Casimir energy 
to be given by 

E = 
I W 2 ) l o o 2n 

~D-l drQ^(r,r). (9.48) 

So, from the form for the Green's function given in (9.36a) and (9.37a), we 
see that we need to evaluate integrals such as 

/ rdrJu(kr)J„„(kr), 
Jo 

which are given in terms of the indefinite integral 

/ 
dxx Zu(x)Z„(x) = — Zv{x)Z„{x) + Z'v(x)Z'v{x) 

(9.49) 

, (9.50) 
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valid for any two Bessel functions Zv, Zv of order v. Thus we find for the 
Casimir energy of the TM modes the formula 

pTM 

Jo x 

Sn\%) . £n\%) 
^-n(n + D-2))[-^-l + - ^ - +(2-D)X 

(x) e'n(x) 
(9.51) 

We obtain the stress on the spherical shell by differentiating this expression 
with respect to a (which agrees with (9.41a) and (9.41b), apart from the 
constant in the integrand), followed again doing the complex frequency 
rotation, which yields 

.. oo 

S™=2nair(D-l)]^W{n>D)Qn> 

where the integrals are 

/>oo j 

Qn = — dxx—\nq(x), 
Jo dx 

(9.52) 

(9.53) 

where 

q(x) y - l j I„(X) + | (4+1(1) + IV-X{X)) 

| - l ) Kv{x) - | ( ^ + i ( x ) + Kv-X{x)) (9.54) 

This agrees with the form found directly from the force density, (9.45), 
again, apart from an additive constant in the x integrand. 

9.2.2 Numerical Evaluation of the Stress 

We now need to evaluate the formal expression (9.52) for arbitrary dimen­
sion D. We implicitly assumed in its derivation that D > 2 and that D 
was not an even integer, but we will argue that (9.52) can be continued to 
a l i i ) . 
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9.2.2.1 Convergent Reformulation of (9.52) 

First of all, it is apparent that as it sits, the integral Qn in (9.53) does not 
exist. [The form in (9.45) does exist for the special case of D = 3.] As in 
the scalar case discussed in Sec. 9.1, we argue that since 

oo 

5 ^ i o ( n , D ) = 0 for D < 1, (9.55) 
n=0 

we can add an arbitrary term, independent of n, to Qn in (9.52) without 
effect as long as D < 1. In effect then, we can multiply the quantity in 
the logarithm in (9.53) by an arbitrary power of x without changing the 
value for the force for D < 1. We choose that multiplicative factor to be 
—2/x because then a simple asymptotic analysis shows that the integrals 
converge. Then, we analytically continue the resulting expression-to all D. 
The constant —2 is, of course, without effect in (9.53), but allows us to 
integrate by parts, ignoring the boundary terms. The result of this process 
is that the expression for the Casimir force is still given by (9.52), but with 
Qn replaced by 

Qn = / dxln 
Jo 

-\q{x) (9.56) 

q(x) being given by (9.54). 
Now the individual integrals in (9.52) converge, but the sum still does 

not. We can see this by making the uniform asymptotic approximations 
for the Bessel functions in (9.54) [ i l l ] , which leads to (n —•> oo) 

-101 + 80L> - 16D2 

+ 

64v2 

5861 + 11152D - 7680£>2 + 2304P3 - 256D4 

16384i/4 

(9.57) 

[Note that the coefficients in this expansion depend on the dimension D, 
unlike the scalar case, given in (9.26).] Because of this behavior, it is 
apparent that the series diverges for all positive D, except for D = 1, 
where the series truncates. 

Recall that two procedures were used to turn the corresponding sum in 
the scalar case into a convergent series, and to extract numerical results. In 
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the second procedure described in Sec. 9.1 we subtract from the summand 
the leading terms in the 1/n expansion, derived from (9.57), identifying 
those summed subtractions with Riemann zeta functions: 

w(n,D)Qn - irn D-l 
K 

fc=i 

D-K-2 

nk I 

I 
J 

N 

- D) - bK+i ^2 n" 
n = l 

(9.58) 

Here bk are the coefficients in the asymptotic expansion of the summand in 
(9.52), of which the first two are 

», - ( ° - 2 >
2

( D - 1 ) . (9.60.) 

81 - 448D + 456L>2 - 176L>3 + 24D4 .„ , x 

h = m . (9.59b) 

In (9.58) we keep K terms in the asymptotic expansion, and, after N terms 
in the sum, we approximate the subtracted integrand by the next term in 
the large n expansion. The series converges for D < K + 1, so more and 
more terms in the asymptotic expansion are required as D increases. 

The method described first in Sec. 9.1 gives identical results, and is, in 
fact, more convergent. The results given there were, in fact, first computed 
by this procedure, which is based on analytic continuation in dimension. 
Here, we simply subtract from Qv the first two terms in the asymptotic 
expansion (9.57), and then argue, as a generalization of (9.55), that the 
identities (9.27a), (9.27b) hold. Therefore, by continuing from negative 
dimension, we argue that we can make the subtraction without introducing 
any additional terms. Thus, if we define 

•KV (^ - 101+8(XD-16 .D 2 \ 

we have 

Qn = Qn - T (1 + ^ J , (9.60) 

1 oo 

5™ = wf«rrnE»(»^)<3" 
1 

2na2T(D - 1) ^ v ' ^ 2va2T{D - 1) 

\n=0 n=JV+l / 
61) 
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where g(D) is the coefficient of v 4 in (9.57). The last sum in (9.61) can be 
evaluated according to (9.29). The approximation given in (9.61) converges 
for D < 4. 

9.2.3 Casimir Stress for Integer D < 1 

The case of integers < 1 is of special note, because, for those cases, the 
series truncates. For example, for D = 0 only the n = 0, 2 terms appear, 
where the integrals cancel by virtue of the symmetry of Bessel functions, 

Kv(x) = K.v(x), In(x) = /_„(*), (9.62) 

for n an integer. However, using the first procedure (9.58), we have a 
residual zeta function contribution: 

^ = 0 = 2 ^ ( ^ - 0 2 + - ) = ^ , (9-63) 

because both ((1 — D) and Y(D — 1) have simple poles, with residue —1, 
at D = 0. This result for D = 0 is the negative of the result found in the 
scalar case, (9.33), which is a direct consequence of the fact that the nD~~2 

term in the asymptotic expansion cancels when the TE and TM modes are 
combined [compare (9.59a) with the corresponding term in (9.30).] The 
continuation in D method gives the same result, because then 

5^(4, + «},-<},) = ̂  ( l - H + ^ ) . ^ , (9.64) 

where a limiting procedure, D —> 0, is employed to deal with the singularity 
which occurs for n = 1, where v —> 0. 

For the negative even integers we achieve a similar cancellation between 
pairs of integers, with no zeta function residual because the ( functions no 
longer have poles there. For example, for D = — 2 we have 

S™~2 = ^~2(Qo-2Q1+2Q3-Q4)=0 (9.65) 

because Q0 = Q4 and Qi = Q3. Again, the other method of regularization 
gives the same result when a careful limit is taken. 

For odd integers < 1, trucation occurs without cancellation, because 
lv 7̂  I-v. For example, for D = 1, 

1 
aSb=i = ^(Qo + Qi) = -0.2621 + 0.6032i. (9.66) 
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Fig. 9.2 A plot of the TM and TE Casimir stress for - 2 < D < 4 on a spherical shell. 
For D < 2 (D < 0) the stress <S™ ( 5 T E ) is complex and we have plotted the real part. 

9.2.4 Numerical results 

We have used both methods described above to extract numerical results for 

the stress on a sphere due to T M fluctuations in the interior and exterior. 

Results are plotted in Fig. 9.2. Salient features are the following: 

• As in the scalar case, poles occur for positive even dimension. 

• The integrals become complex for D < 2 because the function 

q(x), (9.54), occurring in the logarithm develops zeros. (This phe­

nomenon star ted at D = 0 for the scalar case.) Correspondingly, 

there are logarithmic singularities, and cusps, occurring at 2, 1, 0, 

— 1, —2, . . . , rather than just at the nonpositive even integers. 

• The sign of the Casimir force changes dramatically with dimension. 

Here this is even more striking than in the scalar case, where the 

sign was constant between the poles for D > 0. For the T M modes, 

the Casimir force vanishes for D = 2.60, being repulsive for 2 < 

D < 2.60 and at tract ive for 2.60 < D < 4. 

• Also in Fig. 9.2, the results found here are compared with those 

found in Sec. 9.1 for the the scalar or T E case. The correspondence 
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is quite remarkable. In particular, for D < 2 the qualitative struc­
ture of the curves are very similar when the scale of the dimensions 
in the TE case is reduced by a factor of 2; that is, the interval 
0 < D < 2 in the TE case corresponds to the interval 1 < D < 2 
in the TM, - 2 < D < 0 for TE corresponds to 0 < D < 1 for TM, 
etc. 
Physically, the most interesting result is at D = 3. The TM mode 
calculated here has the value S™3 = — 0.02204/a2. However, if 
we wish to compare this to the electrodynamic result described in 
Chapter 4, we must subtract off the n = 0 mode, which is given 
in terms of the integral Qo — 0.411233 = 7r2/24, which displays 
the accuracy of our numerical integration. Similarly removing the 
n = 0 mode (= —7r/24) from the result quoted in (9.34), <S™3 = 
0.0028168/a2, gives agreement with the familiar result (4.40) [13, 
76, 14, 15, 187, 188, 189, 190, 191]: 

C TM+TE 
D n > 0 

0.0462 
= -j~, (9-67) 

D=3 u 

9.3 Toward a Finite D = 2 Casimir Effect 

The truly disturbing aspect of the results given in this Chapter are the poles 
in even dimensions. In particular many very interesting condensed matter 
systems are well-approximated by being two dimensional, as discussed in 
Chapter 8. Are we to conclude that the Casimir effect does not exist in two 
dimensions? 

One trivial way to extract a finite answer from our expressions, which 
have simple poles at D = 2 (setting aside the logarithmic singularity there 
in the TM mode, because that only occurs in one integral, Q0) is to average 
over the singularity. If we do so for the scalar result in (9.32), we obtain 

„ T F 0.01304 
S™2 = ^—, (9.68) 

while for the TM result in (9.58), we find 

eTM 0.340 
6 Z ) = 2 = — , (9.69) 

which numbers, incidentally, are remarkably close to the leading Q0 term, 
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as stated in (8.162), (8.127), which are -0.0140 and -0.254. But, there 
seems to be no reason to have any belief in these numbers. 

However, something remarkable does happen in the scalar case. If we 
use the first procedure, (9.58), we note that the poles can arise both from 
the integrals and from the explicit zeta functions. For the latter, let the 
dependence on D be given by r(D)/(D — 2) which has a pole at D = 2. 
When we average over the pole, we obtain 

where the prime denotes differentiation. For the scalar modes it is easy to 
verify that r'(2) = 0. Thus, there is no contribution from those subtracted 
terms. In other words, they might just as well be omitted, which is what we 
would do if we inserted a cutoff and simply dropped the divergent terms. 
(This procedure does give the correct D = 3 results.) This provides some 
evidence for the validity of the procedure which yields (9.68). 

Unfortunately, the same effect does not occur for the TM modes, r'(2) ^ 
0. Nor does it occur for higher dimensions, D = 4, 6, . . . , even for scalars. 
And, even for scalars, it is not clear how the divergences of a massive 
(2+1) theory can be removed. So we are no closer to solving the divergence 
problem in even dimensions." It is clear there is much more work to do on 
Casimir phenomena. 

I For a discussion of the inadequacies of the dubious procedure of attempting to extract 
a finite result in Ref. [3l], and described in Chapter 8, see Ref. [188, 225, 302]. Recall 
that the divergences which occur in 2 dimensions where first discovered by Sen [299, 
300]. See also Ref. [244]. 



Chapter 10 

Cosmological Implications 

In Chapter 6 we considered some hadronic implications of quantum vac­
uum energy. Here we turn to the opposite extreme, the cosmological scale. 
Significant issues arise when we consider gravitation, because the absolute 
scale of energy presumably is now meaningful as the source of gravity. In 
particular, one might think that the cosmological constant would have its 
origin in quantum fluctuations of the gravitational and other fields, yet 
naive estimates give far too large a value. 

In this Chapter we will give a modest introduction to this subject by 
considering quantum fluctuations in a gravitational regime where they are 
surely relevant.* The original higher-dimensional theory was that of Kaluza 
and Klein [303, 304, 305, 306, 307], There an extra fifth dimension allowed 
the unification of electromagnetism and gravity. Higher dimensional gen­
eralizations allow the inclusion of Yang-Mills fields [308, 309]. Of course, 
superstring theory is of necessity formulated in at least ten dimensions [310, 
311, 312]. Where are these extra dimensions? Barring recent specula­
tions [313, 314, 315, 316, 317, 318] that the extra dimensions may be large, 
~ 1 mm, the presumption has been that they are curled up on a scale of 
the Planck length. If so, the resulting field confinement should give rise 
to an observable Casimir effect, which might stabilize (or destabilize) the 
compact geometry. We will consider this phenomenon, for the case of JV 
compact dimensions on a hypersphere, in the following section. We will 
conclude this Chapter with some speculations concerning the cosmological 
constant, which now appears to be nonzero but small [319, 320, 321, 322, 

*For a classic reference to quantum field theory in curved space, see Ref. [101]. 
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323, 324, 325, 326, 327, 328, 329]. 

10.1 Scalar Casimir Energies in M 4 X SN 

The idea of Casimir compactification, that zero-point fluctuations stablize 
the geometry of the extra dimensions, has been explored by several authors, 
starting with Appelquist and Chodos [28, 330, 331, 29, 332, 333, 334, 335, 
336, 337, 338, 339, 340, 341, 342, 343, 344, 345]. Candelas and Weinberg 
[29] showed that stability could result for large number of scalar and Fermi 
fields in 4 + N dimensions, N = 3(mod4), while Chodos and Myers [339, 
340] explored graviton fluctuations and found unstable tachyonic behav­
ior. The early work on this subject was restricted to odd N, because when 
the number of compact dimensions are even, ultraviolet logarithmic diver­
gences remain after all legitimate subtractions. This is associated with the 
fact that one-loop counterterms can only be constructed for the Einstein-
Hilbert action in even numbers of dimensions [346]. Myers [341] numeri­
cally computed this logarithmic term for gravity fluctuations using a zeta 
function technique. The general IV case for scalars was first considered by 
Kantowski and Milton [25], which we follow below. 

We will follow that latter development here. Following the formalism of 
Sec. 2.3, we can write the Casimir energy density of a massless scalar field 
in a M4 x SN manifold, the iV-sphere having radius a and volume Vjv, as 

u(a) = VN(T00) =VN lim d°d'°Im G(x,y;x' ,y'), (10.1) 
(z,3/)-»(x',2/') 

where the x are the coordinates in the Minkowski space M4 , while the SN 

coordinates are denoted by y. For defmiteness, we understand the point-
splitting limit in (10.1) to be taken with a spacelike separation. Because 
of translational invariance in x, we can express G as a four-dimensional 
Fourier transform, 

G[x, y; x', y') = j ^ e - M * - * ' ) ' ' ^ y>- fc^), ( 1 0 . 2 ) 

in terms of which the vacuum energy can be simply expressed as 

w(a) = ~i^y j d " k Jc^^9(y,y,k2 -OJ% (io.3) 
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c+ 

Fig. 10.1 The LJ plane for odd TV showing the Green's function contours in the complex 
ui plane. Shown schematically are the poles in the Green's function, and the branch cuts 
starting at /3 = 0, where /3 is given by (10.15). The corresponding branch points occur 
at u> = ± ^k2 - (N - l ) 2 / 4 a 2 . Note that if k < (JV - l ) / 2a the branch point and pole 
there lie on the imaginary axis. In that case, c+ encloses the branch point on the positive 
imaginary axis, while c_ encloses the branch point on the negative imaginary axis. 

where the contour c of the to integration consists of c_ and c+, c+ encircling 
the poles on the positive real axis in a clockwise sense, and c_ encircling 
those on the negative real axis in a counterclockwise sense. See Fig. 10.1. 
The reduced Green's function satisfies 

(V% +k2- Lo2)g(y, j , ' ; k2 - OJ2) = -S(y - y>), (10.4) 

where V^, is the Laplacian on SN and 6(y—y') is the appropriate 5 function. 
In general we find g for arbitrary iV by expanding in iV-dimensional 

spherical harmonics: 

vS,J7"M •giT-to). 

where the eigenvalues and degeneracies are 

Mf = l(l +N-l), 

Di 
(2l + N-l)(l + N-2)\ 

(N-l)\l\ 

(10.5) 

(10.6a) 

(10.6b) 

(The dependence of the hyperspherical harmonic on the polar angle is given 
by the Gegenbauer polynomials discussed in Chapter 9.) Use of the gener­
alized addition theorem for the hyperspherical harmonics, 

Di Y^Yr(y)Yr(y) = v^ (10.7) 
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leads to the following expression for the energy (10.3): 

p r ° ° 7~) 

" l = - ^ / f t r ^ ( w J ' 1 - - <10-8> 
'«=+ J = 0 V l 

where the integrand's dependence on u2 has been used to combine the two 
parts of the c contour to one, the right-hand contour c+. [Compare the 
form of (10.8) with the generic form (1.17).] 

As is obvious from (10.8), the vacuum energy of the massless scalar 
in M4 x SN is a linear sum of vacuum energies of massive scalars in 4 
dimensions. The mode sum on I diverges for iV > 1 and the momentum 
integrals diverge for all N. To obtain finite Casimir energies we can subtract 
off divergences identifiable as contact or cosmological terms from the outset. 
Because the I sum is finite for the N — 1 case, we consider that situation 
first. 

10.1.1 N = 1 

In that case, the masses are Mf = I2, and the degeneracies are Do = 1, 
Di>i = 2, so that the mode sum gives, from (8.130) 

°° n r 

Mf/a2 + k2-u>2 {k2-uj2y/2 I . 

^ + , ^ ^ L / 2 ,)• (10-9) ( f c 2 _ w 2 ) l / 2 \ ^ ' e27ra(fe2-u;2)V2 _ x 

This sum has been written as an asymptotic part plus a remainder. The 
asymptotic part produces an infinite "cosmological term" in the energy, 
and is either subtracted off completely, or regulated by inserting a cutoff 
<̂ max ~ b~1, b presumably at the Planck scale, resulting in a cosmological 
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energy density^ 

D(a) = -—— / d6k2 I duiuz 

{UJ- — K-J''-

(10.10) 

(2TT)4 J Jk (u!2 - Jfc2)V2 

Vi 

80TT265 ' 

where Vi = 2ira is the "volume" of a circle. Here we have taken an abrupt 

cutoff in OJ; however, any other technique also yields u c o s m o ~ V\/bb. It is 

important to notice tha t the sum in (10.9) has only simple poles; however, 

the par t t ha t we identify as a cosmological term and subtract off has branch 

points at w = ±k. For odd N, including the JV = 1 case, the branch 

cuts are drawn away from each other on the real UJ axis out to ±oo (see 

Fig. 10.1). The remainder of (10.9) produces the unique Casimir energy 

and is easily evaluated by (i) integrating over the 4n solid angle in the 

momentum element d3k, (ii) distorting the contour c+ to one lying along 

the imaginary ui axis, ui = i( (—oo < ( < oo), and (hi) replacing C and k 

by plane polar coordinates, k = Ksmd, £ = KCOS8, and integrating first 

over 9 and then over K, just as we did in Sec. 2.3. The result is 

3C(5) 5.0558077 x 1 0 " 5 

647r6a4 (10.11) 

which uses (2.34). This is exactly the result first obtained by Appelquist 

and Chodos [28, 330]. 

10 .1 .2 The General Odd-N Case 

The Casimir energy for arbi trary odd N can be extracted similarly. We 
first define a new mode index TO, 

m = l+ , (10.12) 

tlf b is the Planck scale, 6" 4 - 1076 GeV4 ~ 10108 GeV/cm3 , so even if a/b ~ 1 this 
is over a hundred orders of magnitude larger than the observed mass density of the 
universe, or of the current inferred value of the cosmological constant. [The critical 
mass density of the universe is 1.05 x 10_5ft,Q GeV/cm3 , where in terms of the Hubble 
constant, hg = / / o / 1 0 0 k m s _ 1 M p c - 1 . ] This is the cosmological constant problem, 
which we shall discuss further in Sec. 10.3. [For a review of the cosmological constant 
problem, see Weinberg, [347, 348].] 
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in terms of which Mf and Di of (10.6a) and (10.6b) can be written as 
functions of m2: 

M2 

DL 

N-\ 

m (N-l)\ 

• • • (m2 - l)m2. 

N - 3 
m 

N-5 

(10.13a) 

(10.13b) 

The sum in (10.8) becomes 

D, £ 
z=o 

D' 
M2/a2 

mz 

£ 
m = 0 

D'a 

mA (32 

P2 

polynomial in m2 and /3: 

where 

f32 = l(N-l)/2}2 + a2u;2-a2k2. 

(10.14) 

(10.15) 

The polynomial terms make no contribution to (10.8) and can be discarded. 
Notice from (10.12) that the m sum should start at (N — l ) /2; however, 
since D'm = 0 for 0 < m < (N — 3)/2 we can start at m = 0. Once again, 
the sum of the pole terms in (10.14) can be evaluated using (2.45), 

oo 

m = 0 

1 

P2 

71 / „s 1 
• - ^ COt(7rp) -7T . 
2/? V HJ 2/32 

(10.16) 

Since D'p//32 is a polynomial in (32, the —1/2/32 term in (10.16) makes 
no net contribution to (10.8) and can be discarded. The remaining cotn/3 
term contains both the divergent cosmological energy and the finite Casimir 
energy. In Fig. 10.1 the branch cuts for /3 are shown as well as the c+ 

contour which avoids the /? = 0 branch points. As in (10.9) we write the 
cot 7T/3 term as an asymptotic part plus a remainder; the former yields the 
cosmological energy 

VN 
bN+4-

(10.17) 
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The remainder yields the finite Casimir energy. It is best evaluated by 
following the three steps described after (10.10): 

1 f°° 7T? 
w ( a ) = - 6 4 ^ R e / 0 ( a K ) 4 ^ 2 % ( e - 2 ^ _ i ) ' (10-18) 

where now 

p2=(?LJ.) _aV. (10.19) 

The integral in (10.18) is most easily evaluated by changing from K to ft as 
the integration variable. The contour for ft which comes from 0 < K < oo 
is not suited for extracting the Casimir energy. This energy is most easily 
computed by integrating ft first vertically, 

N - 1 
ft=— \-iy, 0 < y < o o , (10.20a) 

and then horizontally, 

J V - 1 
ft = x + ioo, — — > x > 0 . (10.20b) 

The nondivergent part of the integral on the horizontal part of the new 
contour is imaginary and hence does not contribute to the Casimir energy 
(10.18). By making the substitution (10.20a), so d(aK,)2 = —2iftdy, we 
obtain 

«Ca 
1 r°° 9ir 

For N > 1 this is nothing more than a sum of Riemann zeta functions at 
odd integer values 4 + N, 4 + N - 2, . . . , 3. For example, the N = 3 and 
N = 5 expressions are 

u3(a) = 
32vra4 

1 

r(7)C(7) 13r(5)C(5) 4r(3)C(3) 
(2TT)7 (2TT)5 (2TT)3 

= ^(7.5687046. . . 10"5), (10.22a) 

uB(a) 
r(9)C(9) 103r(7)C(7) 604T(5)C(5) 192r(3)C(3) 

(2TT)9 (2ir)7 (2TT)5 (2TT)3 3847ra4 

— (4.2830381... 10"4), (10.22b) 
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N 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 

cfiuN 
-5.0558077 x 10~5 

7.5687046 x 10"5 

4.2830382 x 10"4 

8.1588536 x 10~4 

1.1338947x 10"3 

1.3293159 x 10"3 

1.3740262 x 10"3 

1.2524870 x 10~3 

9.5591579 x 10"4 

4.7935196 x 10"4 

-1.7990889 x 10"4 

-1.0231947 x 10~3 

-2.0509729 x 10"3 

-3.2631628 x 10"3 

-4.6593317x 10"3 

-6.2388216 x 10"3 

-8.0008299 x 10"3 

-9.9444650 x 10"3 

-1.2068783 x 10"2 

-1.4372813 x 10^2 

Table 10.1 Casimir energy density uj^(a) for a massless scalar in M4 x SN, with N 
odd. The radius of the sphere is a. 

respectively. Results for larger N are tabulated in Table 10.1 and graphed 
in Fig. 10.2; they agree with the findings of Candelas and Weinberg [29]. 
Note that the Casimir energy is attractive for N = 1, repulsive for odd N, 
3 < N < 19, and attractive for odd N thereafter. 

10.1.3 The Even-N Case 

When the internal space is a sphere SN with ./V even, we find a cutoff-
dependent divergent cosmological energy exactly as in the odd-iV case [see 
(10.17)]; however, now the Casimir energy also diverges. The divergence 
is logarithmic in a/b and, fortunately, the coefficient of the logarithm is 
independent of the actual cutoff technique used. We evaluate u(a) of (10.8) 
by shifting the index mode as was done in the previous subsection, with m 
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-0.015 

N 

Fig. 10.2 Plot of aAuN for odd N. 

and M ^ defined as in (10.12) and (10.13a), and 

DL 
2 

(N-l)l 

m — 

m — 

(01 
(Vf m 2 -

771. 

M] 
(10.23) 

The mode index m is now half-integral, and, because of the vanishing of D'm, 
the sum on m can start from 1/2. If D'm/m{m? — j32) is again factored into 
a pole term plus a polynomial as in (10.14), the polynomial contributions 
vanish and the remaining energy can be written as 

u(a) = 
(27T)' 

Jd3kI(c+,Z), 

where the functional / is the contour integral in the u> plane 

/ (c ,F) = dujuj2-?-F(uj). 

(10.24) 

(10.25) 
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Ref3 = -(N-l)/2 

c_ 

Re/3 = (N-l)/2 

Fig. 10.3 The LJ plane for even N showing the Green's function contours used and the 
branch cut on the imaginary axis for f3 = 0. The integration contours surround the 
branch cuts for ln[(N - l ) / 2 ± /?]. Here we have assumed that k < (N — l)/2a. If 
k > (N — l ) /2a the /3 = 0 branch cut lies on the real axis between the c+ and c_ 
contours. The curves Re/3 = ±(JV — l ) /2 are also sketched. 

The function S in (10.24) is the infinite sum 

SH= J2 m 

m = l / 2 
m 2 - / 3 2 (10.26) 

f32 is again given by (10.15), and c+ is the right-hand contour shown in 
Fig. 10.3. The m sum in (10.26) necessarily diverges unless we regulate it 
in some manner. Here we simply subtract a constant, l / (m + 1/2), from 
each mode, i.e., we write 

oo 

EH = \ E 
vn' = l 

l l l 
+ (j3-\) m> m / _ ( / 3 + i ) m' m' 

.^( l + ^ _ ^ Q _ J g ) _ 2 7 + 2C(l) (10.27) 

where m' = m + 1/2 and C(l) is an infinite constant. The digamma function 

is defined by 

i;(z) =-^lnT(z), (10.28) 

and 7 = -V>(1) ~ 0.57721 is Euler's constant. The digamma function ip(z) 
is analytic over the entire complex plane except at z — 0, — 1, - 2 , . . . , 
where it has simple poles with residues all equal to - 1 . To evaluate (10.24) 
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we use the identities 

W i f l ^ ( ^ i > ) - (N-m±t3- (JV-5)/2±g----

-Tik-f (1029a) 

^(1/2 - /?) = V(l/2 + /?) - Trtan/ftr, (10.29b) 

and the representation 

2 

2 ^7 AT - 1 ± 2/? 
1 

y0 e ™ - 1 i2 + [(iV - l ) /2 ± /?] V ' 
(10.29c) 

which is valid for Re [{N — l ) /2 ± /?] > 0. We connect the branch points 
/? = 0 by the branch cut as shown in Fig. 10.3. We choose the branch 
cut in ln[(N — l ) /2 + P] to run along the negative real u> axis starting at 
j3 = -(N - l ) /2 (i.e., for u> = -k) as also shown in Fig. 10.3. For the + 
sign this choice makes (10.29c) valid in the ui plane to the right of the line 
Re/? = -(N - l ) /2 . The branch cut for ln[(N - l ) /2 - /?] is drawn to the 
right from /3 = (N—l)/2 (i.e., for u> = k) on the positive real to axis making 
(10.29c) valid for the - case to the left of Re (N - l ) /2 . 

Using (10.29a), (10.29b), and (10.29c) we can rewrite (10.27) as 

EH 1 1 1 
(N-3)/2 + 0 (N-5)/2 + f3 • " 1/2 + /? 

1/2 , fN-1 \ 7T 
In — \-/3 +-tan?r/? (N-l)/2 + p \ 2 ^) 2 

r dtt f 1 \ 
+ J0 e™ -l{t* + [(N-l)/2 + p]*)~^ + C(1)' 

(10.30) 

valid for Re/? > -(N-~l)/2 (see Fig. 10.3). The infinite constant ~ 7 + C(l) 
makes no contribution to (10.24) and will be discarded. We rewrite the 
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logarithm term in (10.30) as 

In 
N-l 

0 = 
1 

In N-l 
P2 In 

(N-l)/2-fl 
_(N-l)/2 + p\ 

(10.31) 
and identify the first term as producing most of the cosmological energy 
density: (the discontinuity of the first logarithm across the cut on the 
postive real axis is — 2m) 

" l o g 
(2 

%a--A I d3k I (c+, - i ln(a2fc2 - aW) 

2 /-oo /-oo T)l 

(2TT)2 

1/6 

d w 2 A 
P 

•.N 

2TT2(N + 4)(N + 1)[(N - l)!!]2 bN+A 

„N-2 N(N-l) 
24TT2 (N + 2)[(N - l)!!]2 bN+2 

72n2(N - l ) / 2 66 ' 
(10.32) 

The constants in (10.32) depend on the cutoff technique used. We include 
them because they are easy to compute and because they illustrate what 
kind of subtractions must be made in the final dynamical equation for a. 
The remaining terms of (10.30) 

E'(uO = E(«,)+7-C(l) + ^ln 
N-l 

a2 (10.33) 

contribute two more terms to the cosmological energy, proportional to 1/64 

and l/a2b2, as well as produce the Casimir energy, proportional to 1/a4. 
To evaluate these we integrate S'(w) along the cv contour and subtract its 
integral along the two-part c+ 0 0 contour [see Fig. 10.4(a)]: 

/ ( c + ) E ' ) = / ( c „ , E , ) - / ( c + o o , S ' ) - (10.34) 

The expression given for £'(w) by (10.33) and (10.30) is valid along c+l 
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W (b) 
Fig. 10.4 Contours in the LJ plane used in evaluating I(c, £ ) . (a) is for k > (N — l)/2a 
and shows the contours c„ and c + 0 0 . (b) is for k < (N — l ) /2a and shows the six poles 
in E„ as given in (10.41a) and (10.41b). 

There, the remaining In and tan terms combine as 

1 
In 

(N-l)/2-0-
2 L(JV- l ) /2 + y9. 

7T =R7T 

— tan7rp = _̂„ .„ , (10.35) 

with the — (+) sign being valid in the first (fourth) quadrant. [The imagi­
nary part of log((7V —1)/2 — /?) is — iir above the cut on the positive real axis, 
and +in below.] The combined terms vanish exponentially fast away from 
the real u> axis and contribute at most a polynomial in k2 to (10.34). As 
usual, such terms correspond to derivatives of <5 functions, e.g., V25(x — x'), 
and vanish before the point-split limit is taken in (10.1). The remaining 
terms of E'(w) are 

E_i_oo — 
1 

(N-3)/2 + p (N-5)/2 + (3 
1/2 . „ /-00 dtt 

+ 
1 

(N-l)/2 + p+2
J0 

1/2 + /3 

1 

e2nt_1 yt2 + [(N _ iy2 + 0\2 

(10.36) 

These terms are analytic to the right of cv and hence can simply be sub­
tracted from E'(w) in the c„ integral of (10.34), 

I{cv, E„) = I(cv, E') - I(c+oa, E + 0 0 ) , 

where, according to (10.27), (10.29a), (10.29c), and (10.36), 

/5 , P 

(10.37) 

2->v — ^ ^-"+00 — + [(N-3)/2]*-/P p r -5 ) /2 ] 
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(1/2)2 

i 
2 

£ , m 
(32 [(N - l ) / 2 ] 2 - /?2 

eft ,27Tt 

1 
_/3 + (N - l ) /2 + it /3 + (JV - l ) /2 - it 

1 

P-(N-l)/2-it 0-(N-l)/2 + it 
(10.38) 

for |Re/3| < (N — l ) /2 . [Note that on c„ we may use both versions of 
(10.29c), so that the tangent never appears, and the logarithm in (10.29c) 
is cancelled by that in (10.33). As we will see, £„ now possesses singularities 
in the first and fourth quadrants, unlike E+00.] 

The part of u{a) in (10.24) not given by (10.32) is 

i(a) - w i o g ( a ) = 
(2nY 

CI fZ 1 I Cy , 2ij y J . (10.39) 

Because £„ is odd in j3 the only contribution to I(cv, £„) comes when cv 

skirts the branch cut in j3{u>) [see Fig 10.4(a)]. If we replace cv by a contour 
completely encircling the cut we get twice (10.39), or 

u(a) -ui 0g(a) 
2(2TT)4 

d3kI(co,T,v), (10.40) 

where CQ is shown in Fig. 10.4(b). This integral is evaluated by distorting 
Co to Coo, a complete circle at u> = oo, and picking up the residues of the 
poles of (D'gI'P)YJV{U>). The integral around CQO results in polynomials in 
k2, which again are contact terms which are to be disregarded. There are 
only six poles in T,v which are not canceled by zeroes in DU(3\ they are 
(each ± sign in independent) 

P 

N-l 
2 ' 

, N-l , . 
± - — — ±it. 

(10.41a) 

(10.41b) 

The subtracted energy is 

1 f°° 
u(a) - Miog(a) = - - — 2 / dkk -D0k 

(2n) 

+ 2 Im / °° 1^—lDit {k2 + [(N - l)it - t2]/a2}1/2 
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3**. Wk ^ H T ^ S ^ - X * - ' 2 ! 
1 

2a4" 
, a 1, f(N-l)it-t2 

l n - - - l n - DU[(N - l)it - t2}2 

(10.42) 

The first three terms on the right side of this equality are additional contri­
butions to the cosmological energy density, while the last term, proportional 
to a - 4 is the Casimir energy, 

WCasimir = ~7 [oiN l n ( a / 6 ) + JN], (10.43) 

where 

IN 

dt 
-ImDit[(N - \)it - i 2 i 2 

16TT2 J0 e2irt - 1 
(10.44a) 

16 

+ Re {Dit[(N - l)it - tz]z} arctan 
J V - 1 

t 
(10.44b) 

Here we have given meaning to the divergent logarithms by cutting off 
the frequency integration at 1/6, where b is presumably the Planck scale. 
Although the "constant" term 7JV depends on the regularization scheme, 
the coefficient of the logarithm a^ does not. For example the same result 
is obtained by a ^-function technique, as we will see in the next subsection. 
The coefficient of the log is easily expressed in terms of Bernoulli numbers 
since 

dti 2 f c - l IS 2fc 

The first few values are 

a 2 8 ^ ( l 2 | i ? 6 1 

1 
~ 12607r2 

a2nt 

\B4 

Ak 
(10.45) 

-8.0413637 x 10"5, (10.46a) 
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N 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 

aN 

-8.0413637 x lO"5 

-4.9923466 x 10"4 

-1.3144888 x 10-3 

-2.5052903 x lO""3 

-4.0355535 x 10"3 

-5.8734202 x 10"3 

-7.9931201 x 10~3 

-1.0373967 x 10~2 

-1.2999180 x lO"2 

-1.5844933 x 10~2 

Table 10.2 Coefficient ajv for the divergent logarithm for the Casimir energy (10.43) 
for a massless scalar in M 4 x SN. 

1 / 1 . „ . 85 .„ . 153. „ 
a4 = - 3 ! 8 ^ U | B 8 | - 2 4 | B 6 | + ^ 1 5 4 

149 
-4.9923466 x 10"4, (10.46b) 302407T2 

137 
= = -1.3144888 x 10"3. (10.46c) 

10560TT2 v ' 

Values for larger JV are tabulated in Table 10.2 and graphed in Fig. 10.5. 
Even though the -JN coefficient is not uniquely calculable, the ajv term may 
be sufficient for practical purposes, because we might expect, if the extra 
dimensions are large, a/b ~ 1016 (see below) so the logarithmic term should 
dominate. 

10.1.4 A Simple (^-Function Technique 

The results found in the previous subsection by the rigorous and physically 
transparent Green's function technique can be quickly and easily repro­
duced by a simple ^-function method, which, as usual with such methods, 
sweeps divergence difficulties under the rug and does not reveal their in­
terpretation as contact terms or cosmological-type terms. The scheme de­
scribed in this section, however, is extremely simple to implement insofar as 
the Casimir energy is concerned. It is far simpler, in fact, than the method 
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N 
30 40 

Fig. 10.5 The coefficient of the divergent logarithm, a/v, for the Casimir energy (10.43) 
for M 4 x SN, N even. 

given in Refs. [29, 339, 340, 341]. The starting point is the expression (10.8) 
for the energy 

• 2 r r ° ° r v 

We regulate the integrals here by replacing the denominator by (m2 — 
p2)1+s, where ultimately s will be taken to approach 0. If s is large enough, 
we can exchange summation and integration, distort the c+ contour to the 
imaginary u> axis, and introduce polar coordinates, u — in cos 9, k = KS\XI8. 

By first integrating over 9, then over K we find 

u(a) 
n2 °° rc 

dn K 
2 ^ 4 

m = l / 2 
[m2 + K2a2-(N~l)2/4}1+s 

2 IAI2-S 

m = l / 2 V y 

(10.48) 
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We next expand this in powers of m, and evaluate the m sums according 
to (4.39), or 

m = l / 2 

(2-*-l)((-z). (10.49) 

As s —> 0 the divergent terms are of the form a^ / (2a 4 s ) , where we identify 
1/s with ln(a2/62) in (10.43). To isolate ajv we can multiply (10.48) by 2s 
and set s = 0, not forgetting terms involving 

< ( 1 + 2s) 
1 

(10.50) 

This leads to the following easily implemented algorithm for a^'-

(1) Expand D'm(m4 — 2m2x+x2) in powers of m, where x = (N —1)2/4. 
(2) Make the replacement (10.49), that is, replace mn by (1/2" -

l )C(-n) . 
(3) In the expansion of D'm replace m™ by (n is necessarily odd) 

rn + 5) / 2 [ ( " - l ) / 2 ] ! 
[(n + 5)/2]!-

(10.51) 

(4) Add the replacements in 2 and 3. [Steps 1 and 2 overlook terms of 
the form (10.50), step 3 includes them.] 

The results of this simply implemented algebraic scheme coincide with 
those found earlier, and given in Table 10.2. Let us illustrate it for the 
simple case of N = 2. We simply expand D'm[m2 — (N - l ) 2 /4] 2 ~ s : 

1m m 

2-s 

2m m^ - ^ m 2 - 2 * + {2—K}.-a)m-» 
422! 

( 2 - l ) ( l - s ) ( - s ) 2_2s 

433! + • • 
. (10.52) 

The first three terms here correspond to step 2 above, while the last term 
corresponds to step 3. We thus have for the Casimir energy 

" 2 
1 

647r2a4 s 

1 n 
2 ( ^ - 1 ) C(-5) 

1 

1 C(- i ) + 3! 32 

- l j C(-3) 

1 1 
'25207r2a4s' 

(10.53) 
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which coincides with (10.46a) when it is remembered that 1/s corresponds 
to lna 2 /6 2 . 

10.2 Discussion 

It is easy to extend this analysis to massive particles, and to higher spins. 
All that is necessary is to generalize the denominator in (10.8) to 

(M?+c)/a2+k2 -u2, (10.54) 

where Mf = 1(1 + N — 1) for scalars, vectors, and tensors, as above, but 
M2 = 1(1 + N) for spinors. Mass effects are included through the constant 
c. For a minimally coupled scalar of mass fi, c = fi2a2, while for a fermion, 
c = n2a2 + (N/2)2. The calculation of the Casimir effect for such fields 
on M4 x SN is worked out in detail in Ref. [26], using both the Green's 
function and the zeta-function methods described here. The generalization 
the internal space being the product of spheres, that is SNl x SN2 x • • •, 
for both scalars and spinors, was investigated in Ref. [27], in the hope of 
finding a stable configuration, but no physically acceptable solutions were 
found. The fundamental difficulty which has stymied progress now for 
over a decade is the inability to include graviton fluctuations. It is well-
understood that the so-called Vilkovisky-DeWitt correction must be incor­
porated in order to achieve gauge and parameterization independence [349, 
90, 350, 91]. But because this correction does not correspond to a quadratic 
term in the Lagrangian, its implementation in the Casimir context remains 
incomplete. As Cho and Kantowski recently noted [351], because the de­
termination of the V-D effective action for gravity involved evaluating de­
terminants of complicated nonlocal operators, progress in compactification 
"slowed to a snail's pace." After years of work they were able to evaluate 
the divergent part of the effective action for even-dimensional geometries of 
the form M4 x SN, N — 2, 4, 6, but no stable configurations were found. 

10.2.1 Other Work 

Kuo and Ford [352] discussed how large quantum fluctuations in the stress 
tensor 

( A V ) 2 = (Tl) - (T,v)
2 (10.55) 
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could cause large metric fluctuations even far away from the Planck scale. 
This could occur for a scalar field periodic in one dimension where 

(Too> = - ^ . (10.56) 

[See (11.8b) with a - • a/2.] However, Phillips and Hu [353] have recently 
argued persuasively that a large ratio of (AToo)2/(TQ0) is not necessarily a 
good measure of the invalidity of semiclassical gravity. 

We conclude this section by remarking that there has been recent in­
terest in treating the Casimir effect dynamically (in an adiabatic, i.e., 
slowly-varying approximation) in cosmological models. The effects could 
be significant, in both 4-dimensional and brane-world [317, 318] scenarios. 
For examples of such calculations see Refs. [354, 355]. A survey ot the 
rapidly exploding literature on this subject would be inappropriate, given 
the rapid state of flux in the field. We merely cite a few representative 
papers to give the reader some flavor of the field [356, 357, 358, 359, 360, 
361]. 

10.3 The Cosmological Constant 

In the above, terms were identified as "cosmological," which were then 
discarded. That was because they are much too large; they are more than 
100 orders of magnitude bigger than any observed cosmological constant, 
and if such terms were present, the universe would have rapidly expanded 
to zero density today. Here we wish to propose that perhaps the Casimir 
energy, proportional to 1/a4, where a is the size of the compact dimension, 
could be the observed cosmological constant, if a is of a suitable value. 

We first note that the "Casimir energy" calculated here has the correct 
structure to be a cosmological constant. In (10.3) we gave an expression 
for the energy proportional to 

U K d3k du>oj2g(y,y;k2-w2). (10.57) 

The LO2 came from the two time derivatives in T00 . If we were to calculate 
Tn we would obtain 

(Tn) oc f d3k jdu,±k2g(y,y;k2 -co2), (10.58) 
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since all three spatial directions are on the same footing. Recall that we may 
evaluate the integrals here by first making a Euclidean rotation, u —> iC, 
and then adopt polar coordinates, 

C = KCOS9, k = K,sm8, (10.59) 

T00 oc - / d0sin20cos20 = - - , (10.60a) 
Jo 4 

1 />27r _ 

T1 1 oc - / d6»sin46l = - . (10.60b) 
3 7o 4 

Thus the vacuum expectation value of the energy-momentum tensor has 
the required form (of course, nothing else is possible, from relativistic co-
variance): 

{ T n = -u(a)g^ = - g^ f f " " - (10-61) 

[That this argument is not merely formal, but holds for the finite regulated 
terms as well, follows from the approach given in Sec. 10.1.4, for example, 
for even N.] 

What now seems to result from the analysis of distant type la supernova? 
[319, 320, 321], consistent with balloon measurements of the anisotropy of 
the cosmic microwave background [323, 324, 325, 326, 327, 328, 329], is a 
positive cosmological constant of the same order as the critical density, 

u(a) ~ pc ~ 10~5 GeV/cm3. (10.62) 

If we take u{a) to be of the order of magnitude as given for the maximum in 
in Fig. 10.2, u ~ 10"3 /a4 , we find, restoring units {he = 2 x 10~14 GeVcm) 

a4 ~ 1 0 2 ^ ? i c ~ 10"12 cm4, (10.63) 

or 

a ~ 1 0 " 3 c m = 10/xm. (10.64) 

Thus, "large" extra dimensions are necessary to understand the cosmo­
logical constant. Indeed, were they much smaller, an unacceptably large 
cosmological constant would result, while if they were bigger than a frac­
tion of a millimeter, they would be phenomenologically irrelevant in this 
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context. However, very recent measurements now show no deviations from 
Newton's law down to the 100 fim level [362], so this interesting regime is 
on the point of being ruled out experimentally. In particular, the graviton 
fluctuation energy of Cho and Kantowski [351] for S6 is too large to be 
consistent with Newton's law, while that for S4 is of the wrong sign to be 
consistent with a positive cosmological constant. For further background 
on the experimental limits, see Refs. [363, 364, 365]. 



Chapter 11 

Local Effects 

11.1 Parallel Plates 

Heretofore, we have considered the global Casimir effect: the total energy of 
a field configuration or the force per unit area on a bounding surface.* But 
one can also consider the local energy density, or, more generally (TM,y), 
which will reveal new information about the divergence structure of the 
theory. Such a quantity is also relevant to the coupling to gravity, as we 
saw in the previous Chapter. 

We begin by considering a scalar field subject to Dirichlet boundary 
conditions on parallel plates at z = 0 and z = a, for which the vacuum 
expectation value of the energy density is given by (2.38), or 

(t00) = — [w2cosAa-fc2cosA(2,z-a)l, (11.1) 
x ' 2iAsinAa[ ^ J\> \ ) 

where A2 = LU2 — k2. The energy per unit volume is obtained from this by 
integrating over frequency and wavevectors, 

( T ° 0 ) ( z ) = / w ( t ° 0 ) - (11-2) 

We evaluate this by making a Euclidean rotation, 

u) —> i(, A —» in, (11-3) 

and, as in Sec. 2.3, introducing polar coordinates in the £, k plane, 

C = KCOS9, k = Ks'mO, (11-4) 

'Although local, the energy densities computed in the last Chapter were constant. 
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fjr/2 

(T00)(z) = - — / KCLK d # K 2 - ^ — [ c o s 2 9coshna 
47T 7o 7o smh Ka 

+ sin2 # cosh K{2Z — a)] 
1 A00 1 

= — ,n „ / d,KK -— [coshna + 2coshK(2Z — a)] 
127T2 J0 smh na 

1 roc , 1 1 e2KZ + e2K{a-z) N 

6TT2 JO \e -1 2 e ~ 1 J 
(11.5) 

Notice that the second term in the last integrand here corresponds to a con­
stant energy density, independent of a, so it may be discarded as irrelevant. 
If we integrate the third term over z, 

f 
Jo 

dz 2KZ I 2K{CL — z) - [e2 K a - 1] , (11.6) 
K 

we obtain another (divergent) constant term, so the only part of the vacuum 
energy corresponding to an observable force is that coming from the first 
term: 

P dz {T00)(z) = - A f dn , "3 = ~ , (11.7) 
J0

 V A ; 67r270 e2Ka_1 1440a3' V ; 

just as found in Chapter 2—see (2.9). 
In general, we have 

(T°°)(z) = u + g(z), (11.8a) 

7T2 

« = ~ , (11.8b) 
1440a4 v ; 

1 1 f°° , 3 e W " + es(i-V«) 

where 

*w = - 6 ^ 1 6 ^ d ^ — i t n — • ^ 
If we expand the denominator in a geometric series, 

ev -1 l-e-y *-^ v ' 
n = l 
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15.0 

Fig. 11.1 The singular part of the local energy density between parallel plates at z = 0 
and z = a. 

we can express g in terms of the generalized or Hurwitz zeta function, 

1 

as follows: 

n^o(" + °)i 

1 

a ^ a nonnegative integer, 

5 ( 2 ) = " 1 6 ^ 4 [ C ( 4 ' Z , a ) + C ( 4 ' 1 ~ z/a)]-

(11.11) 

(11.12) 

This function is plotted in Fig. 11.1, where it will be observed that it 
diverges quartically as z —• 0, a. (Its z integral over the region between the 
plates diverges cubically.) As we have seen, this badly behaved function 
does not contribute to the force on the plates. 

Next, we turn to (Tzz). According to the stress tensor (2.21) and the 
Green's function (2.20), that is given by 

(Tzz) 
1 
2i 

(dzdz, - dxdx> - dydy, + d0d0,)G(x, x') 

1 f ducPk .„ „ X2N i 
A sin Xa 

sin Az< sin A(z> — a) 
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1 [ du> d 
~2iJ 72TT 

du> d2k X 
)3 sin Xa 

du>d2k iX 

(2TT)3 ~2 
cot Xa, 

[cos Xz cos X(z — a) + sin Xz sin X(z — a)] 

(11.13) 

which coincides with the 2 = 0, a result (2.24); that is, the normal-normal 
component of the expectation value of the stress tensor between the plates 
is constant! If once again, the irrelevant a-independent part is removed,t 
what is left is just three times the constant part of the energy density 
(11.8b), 

(Tzz) -3 x 
1440a4' 

(11.15) 

The remaining nonzero components of the stress tensor are 

{TXx) = {Tyy) = —{dxdx> - dydy, - dzdz> + d0d0,]G(x,x') 

dcod2k 

2i J (2TT)3 AsinAa 
[UJ2 sin Xz sin X(z — a) 

A cos Xz cos A(z — a)] 

= -u-g(z), (11.16) 

where, once again, we have introduced polar coordinates in the frequency-
wavenumber plane, and dropped the infinite (a-independent) constant in 
u. Thus the tensor structure of stress-tensor is 

(T"">(s)=« 

/ l 0 0 0 \ 
0 - 1 0 0 
0 0 - 1 0 

\0 0 0 3 / 

+ g{z) 

/ 1 0 0 o \ 
0 - 1 0 0 
0 0 - 1 0 

\ o 0 0 0 / 

(11.17) 

where u is given by (11.8b) and g by (11.12). Because u is constant, this vac­
uum expectation value is divergenceless, because g(z) does not contribute 

^The infinite parts of (Too) and (Tzz) are related by the same factor of three: 

d,KK3 , „ , i „ f / dKK? 
(Tzzy

ni = 
4TT 2 

(Too)'" 
12TT2 

(11.14) 
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to (T22): 

d^T*") = dz(T
zz) = 0. (11.18) 

The second term in (11.17) diverges at the boundaries, z = 0, a, and has a 
integral over the volume which diverges; yet as we have seen, it is physically 
irrelevant because its integral is constant, and it has no normal component. 
Is there a natural way in which it simply does not appear in the local 
formulation? 

The affirmative answer hinges on the ambiguity in defining the stress 
tensor.* In Chapter 2 we noted that this ambiguity was without effect as 
far as the total stress or the total energy was concerned. Now, however, we 
see the virtue of the conformal stress tensor [120]: 

f"" = 3"00"0 - i ^ A t ^ V - Ud"^ - g^d2)<p2, (11.19) 

which, by virtue of the equation of motion d2cf> = 0 has a vanishing trace, 

T£ = 0. (11.20) 

If we use this stress tensor rather than the canonical one, we merely need 
supplement the above computations by that of the vacuum expectation 
value of the extra term. Thus to obtain (TXT) we add to (11.16) 

~(d2 + d2-d2)G(x,x) 

diod2k „ 

QiJ 
sin Xz sin X(z — a) 

A sin Xa (2TT)3 

1 fducPk 2X 
= ~~^ / in \3 • \ cosX(2z-a) 

= g{z), (11.21) 

which just cancels the extra term in (11.16). Again, because G(x,x) only 
depends on z, there is no extra contribution to (Tzz): 

~\{dl - 9~d2)(<t>2) = ±-.(d2
x + d2-d2)G(x,x)=0. (11.22) 

tFor a rather complete discussion of this see Ref. [119], Sees. 3-7, 3-17. 
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The extra term for (Too) is just the negative of that in (11.21), 

-±dlG{x,x) = -g{z), (11.23) 

which cancels the second term in (11.8a). Thus, the conformal stress tensor 
has the following vacuum expectation value for the region between the 
parallel plates: 

(?"") = u 

I'l 0 0 0 ' 

° ^ ° ° I (11 24) 
0 0 - 1 0 ' ' [ ' 

\0 0 0 3 

which is traceless, thereby respecting the conformal invariance of the mass-
less theory. This is just the result found by Brown and Maclay by general 
considerations [100], who argued that 

(f^) = u{Az»z" - 5 H > (11.25) 

where iM is the unit vector in the z direction. 

11.2 Local Casimir Effect for Wedge Geometry 

In Sec. 7.1.3 we briefly discussed the Casimir effect in wedge-shaped geome­
tries, which are relevant for cosmic strings. Using the formalism developed 
in Sec. 7.1, as first stated in Ref. [24], Brevik and Lygren [254] (see also 
Ref. [260]) considered the region between two conducting planes making a 
dihedral angle of a. The vacuum expectation value of the electromagnetic 
stress tensor is in cylindrical coordinates (t, r, 9, z) 

I fn2 

7207r2r4 1^2 W r ) > = - 5 ^ b + H b - 1 

/ l 0 0 0 \ 
0 - 1 0 0 
0 0 3 0 

\ o o o -i J 

(11.26) 

Note that this reduces to twice the scalar result for parallel plates, (11.24), 
in the limit a —* 0, as expected. For a cosmic string, the line element is 

ds2 = -dt2 + dr2+/3-2r2d62 + dz2, (3 = (1 - 4MG)"1 , (11.27) 
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where fi is the mass per unit length of the string. The stress tensor in the 
presence of the cosmic string is obtained from (11.26) by the replacement 
IT/a —> p. 

11.3 Other Work 

Local effects on a scalar quantum field induced by ideal point and line 
boundaries were discussed by Actor [366]. Actor also considered the local 
effect on a scalar field confined within a rectangular cavity in Ref. [250]. He 
makes a conjecture concerning the extraction of the finite effective potential, 
or global Casimir energy, which seems rather dubious, however, given the 
neglect of external modes. 

11.4 Quark and Gluon Condensates in the Bag Model 

The considerations in Sec. 11.1 were quite clear cut, as is usual in the 
essentially one-dimensional geometry of parallel plates. Three-dimensional 
configurations are of much more interest, yet they provide extra difficulties. 
In fact, as we have already seen in this monograph, the general divergence 
structure of the Casimir effect is still not well understood. 

Here, however, we will hazard a prolegomenon of a calculation, given 
nearly two decades ago [21] which is of great importance in hadronic physics. 
This has to do with the quark and gluon condensates in the QCD vacuum. 
The phenomenological input is the value of the gluon condensate derived 
from an analysis of QCD sum rules [234, 235, 367] 

( ^ G 2 ) = 0.012 GeV4, (11.28) 

which is said to signify a chromomagnetic vacuum because 

i G 2 = i ( B a - B ° - E Q - E a ) , (11.29) 

a being the color index. Theoretically, this result is supported by the 
observation [368, 369] that the one-loop effective potential [368, 369, 370, 
371] (in the absence of quarks) 

V ( < ^ 2 > ) = (\G2) - \bog*{\c?) (ln(\G2) + const.) (11.30) 
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possesses a minimum with a nonzero value of (G2), the condensate, 

< j G 2 ) = ( ^ ) e x p ( 2 / M 2 - l ) , (11.31) 

where the scale parameter A incorporates the constant in (11.30). Numer­
ically (bo = —11/167T2, if we ignore quarks, and we take as — g2/4ir « 0.2) 
this gives 

(G2) « A4 x 6 x 10"6, (11.32) 

which, combined with the phenomenological result (11.28) yields for A 

A « 1 3 G e V , (11.33) 

much larger that the scale parameter of QCD, 

^ « 3 0 0 M e V . (11.34) 

Part of this discrepancy is a renormahzation group effect.§ For if we regard 
A as the scale at which as has the value 0.2, (11.31) would read (e is the 
base of the natural logarithms) 

(-G2) = 4~, (11-36) 

some 30 times too small. In this sense the gluon condensate is large. 
Similarly, the vacuum is characterized by a quark condensate, 

-(qq) » 0.4/i3 « 0.01 GeV3 (11.37) 

for each light quark, as we know from chiral symmetry breaking [372]. 
This second phenomenon has not been derived from an effective poten­
tial, renormalization-group type of argument, because of the difficulty of 
including quarks in that analysis. 

Two obvious questions are raised by the above remarks: (i) Is it possible 
to shed further light on the condensation mechanism of quarks and gluons? 
In particular, the occurrence of the correct sign for both condensates is 
nontrivial. (ii) Beyond this it would be of great interest if the numerical 

§The renormalization group equation for the running strong coupling is, at the one-loop 
level, 

^ = bog3. (11.35) 
dfi 

This is the basis of (11.30). 
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values of (G2) and of (qq) could be understood, particularly their great 
difference in scale. Of course, there remains a question of a rather higher 
order: What does the condensation phenomenon tell us about the dynamics 
of QCD, especially confinement? 

Olaussen and Ravndal [373, 374] were the first to attempt to calculate 
the gluon condensate in terms of vacuum fluctuations in Johnson's bag 
model of the vacuum [17], described in Chapter 6. Here we will use the 
machinery described in that chapter. We will first calculate the free (g = 0) 
quantum fluctuation value of (G2(r)) inside a spherical cavity of radius o, 
the surface of which is a perfect magnetic conductor. Because of the dual 
connection between the chromomagnetic field and the Green's dyadic T, we 
have from (4.8) 

{B2{r)) = \j^€~l"T £{-2^,r)|X^)|2 

Ira 

- t r | V x [Gz(r,r ')X lm(fi)Xrm(n')] x V | r = r , } , (11.38) 

where in the interior of the bag, r, r' < a, 

Fi{r,r'),Gl(ry)=ikji(kr<)[hi(kr>)-AF,Gji(kr>)]. (11.39) 

Here, in order the to satisfy the boundary conditions (6.1), the constants 
Ap, AQ are given by (6.5a), (6.5b). To eliminate the m sum over the 
vector spherical harmonics we use (4.6) and (when /;, gi are spherical Bessel 
functions of order I) 

i 

Y, [V x fi(r)Xim(n)} • [V x gi(r)Xlm(n)}* 
m= — l 

a - t l ' 1 S H & ] . ) '» 
4TT V r2 dr dr r2 

(11.40) 
2l + l_k2 

47T ^ + ^i{rfifr(r9i) 

Thus the vacuum expectation value of the square of the magnetic field 
within the bag is 

( S 2 ( r ) ) = 7 / t e " " T £ ^ l^(r,r)+u2Gl{r,r) 
J l=i 
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\ / T =r 

By interchanging Fi <~* Gi we obtain the expectation value of E2: 

J 1—1 

(11.41) 

=i 

1 d ( d 
r2 fa 

r(£jr>Fl{r,r>) 
r'=r. 

(11.42) 

Evidently in f£ r2 dr (^[E2(r) + B2(r)]) is the form of the gluon zero-point 
energy given, for example, in (5.27b). 

It is interesting to note that in the QED case of a perfectly conducting 
spherical shell, considered in Sec. 4.1, where both interior and exterior 
modes are present, the surface term in the total energy vanishes, so that 
from (11.41) and (11.42) we see that the electric and magnetic fields make 
equal net contributions.^ This is not the case for the QCD bag since then 
the surface term makes a crucial contribution. For the quantity of interest 
here, G2 — G^VG^V — 2(B2 — E2), the surface term is everything: 

1 r °° (G2) = 4^rwe~ lUTB2'+i) 
j i=\ 

LA. 
r2 dr 

^ r ' [ G ; ( r , r ' ) - F , ( r , r ' ) ] ) _ . (11.43) 

Substituting (6.5a) and (6.5b), introducing the modified Bessel function 
(4.25), and using the Wronskian (4.26), we easily find the following simple 
expression for the vacuum expectation value of G2: 

<G2(r)> P^J;^'>SJ^M 4ir2a r2 dr 
1 = 1 ~" - x / . v / 

(11.44) 

where the limit 6 —> 0 is understood. If we do not integrate over r, we may 
set <5 = 0. 

Before proceeding with the numerical evaluation of this, let us derive 
the corresponding expression for (qq) in the bag. For a single color and 

"The surface term contributions from (E2) and (B ) separately are not zero, but are 
equal and opposite and hence cancel. 
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flavor we have 

(qq(r)) = --tiG(x,x), (11.45) 
i 

where the fermion Green's function was determined in Sec. 4.2. Using the 
completeness relation (4.57) for the angular momentum eigenstates given 
there, we find immediately 

(qq(r))= ^ ^ 2 ( 1 + 1 ) / dxetxS 'V ' { ' + 1 . ' . (11.46) 
mK " A^av^Q

K V-co sf(x) + sf+1(x) 

The numerical evaluation of formulae (11.44) and (11.46) is straight­
forward using the uniform asymptotic expansion for large I, (4.29a). The 
leading term, which is probably quite accurate" gives 

si(xr/a)s',{xr/a) , „ . . . . , .,, .„., ,„. 
l ^ oo : lK ' / ' ~ exp{-2^[r,(z) - ^zr/a)}}, (11.47) 

si(x)si{x) 

where z, v and r\ are given by (4.30). The I sum can then be carried out 
exactly, and the z integral is easily evaluated numerically. The result is 
shown in Fig. 11.2, and coincides, for all r, to better than 1% with an exact 
numerical evaluation of (11.44). Especially of interest are the values at the 
center of the bag,** 

r = 0 : (G2> = ^ , (11.48a) 

and near the surface, 

r _ a : ( G 2 ) = 3 1 ^ = 0 I 0 7 6 
N ' 4TT2 (a - r ) 4 (a - r)4 y ' 

These agree with the results of Olaussen and Ravndal [373]. 

II As shown in Sec. 6.2.1.3, the leading nonvanishing term in the asymptotic expansion 
for the energy is already very good for the lowest modes, 1 = 1 and I = 0, for gluons 
and quarks, respectively. 

**To within about 1%, this may be obtained directly from the lowest mode contribution, 
1=1, which is the only mode contributing at r = 0. Exact numerical integration gives 
(G2(0)) = 0.797/a4. This shows that the asymptotic expansion is valid all the way 
down to / = 1. The same remark applies to the / = 0 quark contribution. 
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15.0 
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<G'(r)>a 
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<q y q(r)>a 

1.0 

Fig. 11.2 Magnitude of the quark and gluon condensates as functions of the distance 
from the center of the bag. The values shown are for a single color, and, for the quarks, 
for a single flavor and helicity state. 

The quark condensate (11.46) is only slightly harder to evaluate. It is 
helpful to use the recursion relation 

sl+1(x) = s[{x) st(x), (11.49) 

and then we see as I —> oo: 

tf{xr/a) + sf+1(xr/a) a (1 + z V / a 2 ) 1 / 2 

sj(x)+sf+1(x) r (l + z 2 ) i / 2 _ i 

xexp{-2v[r)(z)-ri(zr/a)}}. (11.50) 

The resulting numerical integral is also given in Fig. 11.2. Here the limits 
are 

r = 0 : (qq) = 

r -> a • (qq) = 

0.15 

0.025 
(a — r)a 

(11.51a) 

(11.51b) 
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It is now clear where the problem lies in applying these results to na­
ture: Both condensates give divergent results when integrated over the bag, 
because of the singularity near the surface. (This reminds us of the similar 
behavior seen in Fig. 11.1 for the canonical scalar energy density near the 
wall in the parallel plate geometry.) In fact, when a — r is sufficiently small, 
the cutoff 5 plays a crucial role. It is especially interesting to look at the 
total gluon condensate, since it is entirely a surface term, 

/•a i ° ° /-oo 

4TT / r 2dr(G 2 ) = — Y{21 + 1) / dxeixS; (11.52) 
J0 n a ; _ j J-OO 

it is very tempting to identify the last integral with 2ir5(5), and then inter­
pret this as a physically uninteresting contact term. Does this mean that 
the gluon condensate, in the bag model at least, vanishes? Most probably 
this is the wrong interpretation. 

We prefer instead to regard the surface divergence in (11.48b) and 
(11.51b) as a defect of the bag model, as a reflection of the over-idealized 
nature of the bag boundary conditions. One might suppose that if the 
boundary conditions were suitably softened, the singularity would disap­
pear. To get some notion of the expected meaningful results, suppose we 
take the values at the center of the bag as typical, presumably rather insen­
sitive to the boundary conditions. Then, with a = 2.6 GeV"1 appropriate 
for an empty bag [17], we obtain from (11.48a) for the gluon condensate 
summed over the eight gluons (as = 0.2) 

i^±GaGa) = 0.01 GeV4, (11.53) 

which is really remarkably close to the sum rule value (11.28). And multi­
plying (11.51a) by 3 for the color trace give 

(qaqa) = -0.03 GeV3, (11.54) 

quite consistent with (11.37) given the crudeness of our model. 
To conclude, we see that quark and gluon condensation of the right 

magnitude emerge naturally from elementary considerations of quantum 
fluctuations. The bag model is an artifice for incorporating our notions of 
asymptotic freedom and infrared slavery and evidently needs to be improved 
to eliminate spurious surface divergences. All of this suggests the intimate 
connection between these condensation phenomena and color confinement. 
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11.5 Surface Divergences 

We have seen in several examples that in general the Casimir energy density 
diverges in the neighborhood of a surface. For flat surfaces and conformal 
theories (such as the conformal scalar theory considered in Sec. 11.1, or elec-
tromagnetism) those divergences are not present.^ However, as Deutsch 
and Candelas [102] showed many years ago, for conformally invariant theo­
ries, (Tjui,) diverges as e - 3 , where e is the distance from the surface, with a 
coefficient proportional to the sum of the principal curvatures of the surface. 
In particular they obtain the result, in the vicinity of the surface, 

0V> ~ e-3r(? + e~Xl] + *-lT$> (11-55) 

and obtain explicit expressions for the coefficient tensors T^J and T^J in 
terms of the extrinsic curvature of the boundary. 

For example, for the case of a sphere, the leading surface divergence has 
the form, for conformal fields, for r = a + e, e —> 0 

<?»») = Zz n n , n > ( H - 5 6 ) 

in spherical polar coordinates, where the constant is 

1 1 
for a scalar, or A = ^ for the electromagnetic field. 

4 
~3 

/ 2 / a 0 0 
0 0 0 
0 0 1 

\ 0 0 0 

° \ 
0 
0 

sinO J 

14407T2 ' 1207T2 

(11.57) 
Note that (11.56) is properly traceless. The cubic divergence in the energy 
density near the surface translates into the quadratic divergence in the 
energy found, for example, in Chapter 5, cf. (5.93). The corresponding 
quadratic divergence in the stress corresponds to the absence of the cubic 
divergence in (Trr). 

This is all completely sensible. However, in their paper Deutsch and 
Candelas [102] express a certain skepticism about the validity of the result 
of Ref. [15] for the spherical shell case [described in Chapter 4] where the 

t t ln general, this need not be the case. For example, Romeo and Saharian [375] show 
that with mixed boundary conditions (9.35) the surface divergences need not vanish for 
parallel plates. For additional work on local effects with mixed boundary conditions, 
applied to spheres and cylinders, and corresponding global effects, see Refs. [376, 377]. 
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divergences cancel. That skepticism is reinforced in a later paper by Can-
delas [213], who criticizes the authors of Ref. [15] for omitting S function 
terms, and constants in the energy. These objections seem utterly without 
merit. A certain degree of shrillness in present there, and in a later critical 
paper by the same author [20l], in which it is asserted that errors were 
made, instead of a conscious removal of unphysical divergences. 

Of course, surface curvature divergences are present. As Candelas notes 
[213, 201], they have the form 

E = Es IdS + Ec IdS(K1+K2) 

+Ef JdS(«! - K2)
2 + Eft fdSKln2 + ..., (11.58) 

where K\ and K2 are the principal curvatures of the surface. The question 
is to what extent are they observable. After all, as we saw in the first 
section of this Chapter, we can drastically change the local structure of 
the vacuum expectation value of the energy-momentum tensor by merely 
exploiting the ambiguity in the definition of that tensor, yet each yields the 
same finite, observable (and observed!) energy of interaction between the 
plates. For curved boundaries, much the same is true. A priori, we do not 
know which energy-momentum tensor to employ, and the local vacuum-
fluctuation energy density is to a large extent meaningless. It is the global 
energy, or the force between distinct bodies, that has an unambiguous value. 
It is the belief of the author that divergences in the energy which go like 
a power of the cutoff are probably unobservable, being subsumed in the 
properties of matter. Moreover, the coefficients of the divergent terms 
depend on the regularization scheme. Logarithmic divergences, of course, 
are of another class [41]. 





Chapter 12 

Sonoluminescence and the Dynamical 
Casimir Effect 

12.1 Introduction 

Single-bubble sonoluminescence* [380, 381, 382, 383, 384, 385, 386, 387, 
34] remains a curiously poorly understood subject. Recall, from the brief 
discussion in the Introduction, that if a small air bubble, of radius ~ 1 0 - 3 

cm, is injected into water and subjected to a strong acoustic field (over­
pressure ~ 1 atm, frequency ~ 2 x 104 Hz) at minimum radius ~ 10~4 cm 
the bubble emits an intense flash of light, of total energy ~ 10 MeV in the 
optical. The flash duration has recently been determined to be on the order 
of 100 ps [388, 389, 390]. Shock wave emission has also been observed [391]. 
The process is sufficiently non-catastrophic that a single bubble may con­
tinue to undergo collapse and emission for periods of times up to months. 
Many still unexplained properties have been observed, including sensitivity 
to small impurities, strong temperature dependence, and the necessity of 
small amounts of noble gases being present^ 

Although there have been many interesting theoretical explanations 
starting from Ref. [396], none of them seem, in the words of Putterman et 
al., "falsifiable" [34]. Among the ideas proposed are Bremsstrahlung from 
ionized regions [397, 398, 399, 400, 401, 389], fluid dynamical models [402, 
403], blackbody radiation [404], molecular interactions [405, 406], inelastic 
collisions between atoms [407], a coherent lasing process [408, 409], and a co­
herent QED interaction with the water vapor-liquid phase transition [410]. 

'Multiple-bubble sonoluminescence was discovered in the 1930s [378, 379]. 

t in fact, the bubbles may be entirely composed of noble gas [392, 393, 394, 395]. 

239 
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Perhaps the most intriguing idea, initially proposed by Julian Schwinger, 
was the notion that this phenomenon had its origin in zero-point fluctua­
tions of the electromagnetic field, or the Casimir effect. In a series of papers 
in the last three years of his life, Schwinger proposed [35, 36] that the "dy­
namical Casimir effect" could provide the energy that drives the copious 
production of photons in this puzzling phenomenon. In fact, however, he 
guessed an approximate (static) formula for the Casimir energy of a spher­
ical bubble in water, based on a general, but incomplete, analysis [103, 
104], leading, for a spherical bubble of radius a in a medium with index of 
refraction n, to a Casimir energy proportional to the volume of the bubble: 

47ra3 f (dk) 1, / 1 \ , n^ 

which is just the difference between the zero-point energy ^ ^hco of the 
medium from that of the vacuum. Of course, this expression is quartically 
divergent. If he put in a suitable ultraviolet cutoff, Schwinger could indeed 
obtain the needed 10 MeV per flash. On the other hand, one might have 
serious reservations about the physical meaning of such a divergent result. 
Schwinger apparently was unaware that I had, in the late 1970s, completed 
the analysis of the Casimir force for a dielectric ball [16]. The generalization 
to a bubble of permittivity e' and permeability fi' in a medium of permit­
tivity e and permeability fi is rather immediate, as was first described in 
Ref. [411, 37] and described in Chapter 5. (The divergence structure of the 
calculation had also been investigated by Candelas [213].) 

Of course, the calculation given there is not directly relevant to sono­
luminescence, which is anything but static, since the frequency of the bub­
ble collapse and re-expansion is ~ 20 kHz. It is offered as only a pre­
liminary step, but it should give an idea of the orders of magnitude of 
the energies involved. It is a significant improvement over the crude esti­
mation used in Ref. [35]. Attempts at dynamical calculations exist [412, 
413, 414, 415, 416, 417, 418, 419, 420, 421]; but they are subject to pos­
sibly serious methodological objections, some of which will be discussed 
below, and probably cannot be trusted beyond the adiabatic approxima­
tion in any event. In fact, we anticipate that because the relevant scale 
of the electromagnetic Casimir effect is in the optical region, with char­
acteristic time scale t ~ 10~15s, and the scale of the bubble collapse is 
of order r ~ 10_6s (undoubtedly, more relevant is the duration of each 
flash, which has been measured to be on the order of 10~10s [388, 389, 
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390]), the adiabatic approximation of treating the bubble as static for cal­
culating the Casimir energy should be very accurate. 

We recall from Chapter 5 that the Casimir energy so constructed, even 
with physically required subtractions, and including both interior and exte­
rior contributions, is divergent, but that if one supplies a plausible contact 
term, a finite result (at least for a dilute medium) follows. This finite re­
sult agrees with that found using C-function regularization. (Physically, we 
expect that the divergence is regulated by including dispersion in both fre­
quency and wavevector, i.e., angular momentum, and the divergences are 
absorbed in a renormalization of physical parameters.) This finite result 
is the same as that obtained from the sum of van der Waals interactions, 
see Sec. 5.9 and the following section. Numerical estimates of both the 
divergent and finite terms are given in the next section, and comparison is 
made with the calculations of Schwinger and others. 

But although these arguments against the relevance of the Casimir en­
ergy to sonoluminescence may seem persuasive, a number of authors have 
continued to insist of the viability of the scheme. In particular, Carlson et 
al. [422, 423, 424] insist on the relevance of the bulk energy (12.1). So this is­
sue is examined in detail in Sec. 12.4. Subsequently, Liberati et al. [417, 418, 
419, 420, 421] argued, rather more persuasively, that, following Schwinger, 
it is the dynamical Casimir effect that is relevant.* The problem here is that 
Casimir energies in the presence of dynamically changing boundaries are 
effectively unknown, so these authors are forced to use the other extreme 
simplification, that of the sudden approximation, and estimate plausible 
photon production rates from the overlap of two static configurations. The 
difficulty with this approach is discussed in the last section of this Chapter. 
There, a simple estimate is given which suggests that any macroscopic elec­
tromagnetic phenomenon such as the Casimir effect cannot possibly supply 
the energy required for sonoluminescence. 

Eberlein [413] had earlier proposed a version of the dynamical Casimir 
mechanism (perhaps more properly called the Moore-Unruh [426, 427, 428, 
429] mechanism) as an explanation of the observed radiation.§ We have 
noted [37] technical difficulties associated with her work, especially those 

•••Jensen and Brevik [425] further elaborate the ideas of Liberati et al. by supposing that a 
thin gas of electrons somehow forms within a sonoluminescent bubble so that transition 
radiation also occurs. A similar effect could occur with excited atomic electrons. 

§A still earlier, one-dimensional precursor, was that of Sassaroli et al. [412]. 
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related to the use of superluminal velocities. See also Refs. [430, 431]. 
In Sec. 12.3 we discuss the form of the force on the surface due to the 
fluctuating electric and magnetic fields, and make a comparison with the 
results of Ref. [413]. If, in fact, reasonable numbers are used in her result, 
the energies involved are too small by 18 orders of magnitude, and even if 
her superluminal velocities are employed, only 1 0 - 3 MeV is available. So, 
qualitatively, her results are not inconsistent with ours.^ 

12.2 The Adiabatic Approximation 

As noted, it is plausible that the adiabatic approximation should be valid, 
that is, that the time scale of the flash is long compared to the optical time 
scale, so that it should be adequate to use the static result of Chapter 5. 
There, a finite result was obtained for the zero-point energy of a vacuum 
bubble in a medium of dielectric constant e, |e — 1| <C 1, as given in (5.83): 

This value is ten orders of magnitude too small to be relevant to sonolumi­
nescence, as well as being of the wrong sign: that is, with this form of the 
energy, the collapse process would be endothermic. (See below.) 

However, our finite result was obtained by a perhaps not fully justifi­
able method; that is, we deleted a cubically divergent term, or, equivalently, 
employed a zeta-function scheme that suppresses such divergences. Alter­
natively, one could argue that dispersion should be included [212, 432, 213, 
201, 186], crudely modeled by 

c o - 1 
<")-!=, , 2 / , , 2- (12-3) 

If this rendered the expression for the stress finite [we consider the stress, 
not the energy, for it is not necessary to consider the dispersive factor 
d(u)e(u>))/du> there], we could drop the cutoff 6 and the sign of the force 
would be positive. From the first line of (5.74) with e' = 1 we find for the 

^A strange variant of the vacuum radiation idea was given by Chodos and Groff [415, 
416], who adopt an ad hoc QED Lagrangian that violates parity, which apparently can 
yield exponential growth of radiation. 
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force per unit area 

^ + ^ £ ^ > ( i + W ( i + . W (12-4) 
where z0 = uj0a/y. As v —» oo, 2:0 —> 0, and the integral here approaches 
nzo/2, and so 

_ (60 - l ) 2 ^ (e0 - l ) 2
 3 m ^ 

^ ^ ^ ^ ^ ^ l ^ T " 0 ' (12"5) 

/= i 

if we take as the cutoffH of the angular momentum sum vc ~ w0a. The 
corresponding energy is obtained by integrating — Ana2J7, 

( £ 0 - l ) 2 , , 3 , 

256 -u>na (12.6) 

which is of the form of (5.108) with 1/5 —> woa/4. 
So what does this say about sonoluminescence? To calibrate our re­

marks, let us recall (a simplified version of) the argument of Schwinger 
[35]. On the basis of a provocative but incomplete analysis he argued that 
a bubble (e' = 1) in water (e ss (4/3)2) possessed a positive Casimir en­
ergy** given by (12.1) or 

^ u i k - ^ r f i - ^ ) . (12-7) 12TT V y/e 

where K is a wavenumber cutoff. Putting in his estimate, a ~ 4 x 10~3cm, 
K ~ 2 x 105cm_1 (in the UV), we find a large Casimir energy, Ec ~ 13 
MeV, and something like 3 million photons would be liberated if the bubble 
collapsed. 

What does our full (albeit static) calculation say? If we believe the 
subtracted result, the form in (12.2), and say that the bubble collapses 
from an initial radius at = 4 x 10~3cm to a final radius a/ = 4 x 10~4cm, 
as suggested by experiments [34], we find that the change in the Casimir 

IIInconsistently, for then 20 ~ 1. If 20 = 1 in (12.4), however, the same angular momen­
tum cutoff gives 5/12 of the value in (12.5). 

" N o t e , for small € — 1, Schwinger's result goes like (e— 1), rather than (e— l ) 2 , indicating 
that he had not removed the "vacuum" contribution corresponding to (5.23). This is 
the essential physical reason for the discrepancy between his results and ours. We 
discuss this further in Sec. 12.4. 
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energy is AE ~ — 10 -4eV. This is far to small to account for the observed 
emission. The sign further indicates that energy is absorbed, not released, 
in the process. 

On the other hand, perhaps we should retain the divergent result (12.6), 
and put in reasonable cutoffs. If we do so, we have 

E = -(e~^ a
2K3 ~ -104eV, (12.8) 

256 v ' 
100 times too small, and still of the wrong sign. (The emission occurs 
during or at the end of the collapse.) 

So we are unable to see how the Casimir effect could possibly supply 
energy relevant to the copious emission of light seen in sonoluminescence. 
Of course, dynamical effects could change this conclusion, but elementary 
arguments suggest that this is impossible unless superluminal velocities and 
incredibly small time scales are achieved. See Sec. 12.5. 

Further experimental results have made it even more difficult to accom­
modate any explanation based on macroscopic considerations. In partic­
ular, Hiller and Putterman [386] found a remarkably strong isotope effect 
when water (H2O) is replaced by heavy water (D2O), where the dielectric 
properties change by no more than 10%. Subsequently, they published an 
erratum [387] reporting exceedingly strong sample dependence, thus warn­
ing that "interpretation in terms of an isotope effect should be regarded 
as premature." This, together with the already known strong temperature 
dependence, and strong dependence on gas concentration and the gas mix­
ture, may rule out Casimir effect explanations entirely. Yet the subject of 
vacuum energy is sufficiently subtle that surprises could be in store. 

12.3 Discussion of Form of Force on Surface 

There seems, in the literature, to be some confusion about the correct form 
for the stress on a surface due to electromagnetic fields (here, of course, we 
are interested in vacuum expectation values of those fields). The definitive 
discussion seems to be given in Stratton [184]. See also Ref. [99]. 

In Chapter 5, we computed the force on the surface by considering the 
discontinuity of the stress tensor, 

Tun = \e{E\ - El) + \^{Hl - H2
n), (12.9) 
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across the surface, where n denotes the direction normal to the surface, 
and _L directions tangential to the surface. This follows directly from a 
consideration of the interpretation to Tnn as the flow of nth component of 
momentum in the direction n. Because of the boundary conditions that 

E x , Dn, H ± , Bn (12.10) 

be continuous, the stress per unit area on the surface is 

T = Tnn(a-) - Tnn(a+) = - v - m - (\ - \ )*% 

+ <M'-M)Ai-(£-£)*! (12.11) 

in terms of fields on the surface, and where a prime denotes quantities on 
the "—" side ("inside") of the surface. This is obviously equivalent to the 
following form for the force density, 

f = - \ [ElVe - DlV1- + ffiV/x - BlV^j = ~\(E2Ve + tf2VM), 

(12.12) 
which is just what is obtained from the stationary principle for the energy 
[99]. 

The controversy seems to center around the additional "Abraham" term 
(5.44) 

f' = ( c - l ) ^ ( E x H ) . (12.13) 

(Henceforward we restrict ourselves to nonmagnetic material, [i — 1.) As 
noted in Sec. 5.4, this makes no contribution to the Casimir effect, because 
the vacuum expectation value is stationary. Furthermore, the existence of 
such a term is dependent upon the (essentially arbitrary) split between field 
and particle momentum. The Minkowski choice for field momentum 

G M = D x H (12.14) 

would not imply this additional force density. The analysis of experimental 
data given by Brevik [203], however, seems to favor the Abraham value 
(5.43). 

If we were calculating a net force on the surface, (12.13) would in­
deed give a further contribution to the force beyond that given by (12.11). 
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Through use of Maxwell's equations, we easily find 

1 
/ ; = ( * - 1 ) 2e 

V„B 2 - ^VnE
2 + i V • (BBn) + V • (EEn) . (12.15) 

If n were a fixed direction, the volume integral of this force density would 
turn into a surface integral, and the result given by Eberlein [413] follows, 

«-sMH (Bl Bl) + (e-e')El 

i - i V i - i - i Dl (12.16) 

But this result cannot be used to compute the stress. Thus, the formula 
(C5) given in Appendix C of in [413] is wrong, and, accordingly, so is (3.18) 
there.tt (It should be stressed that this extra force must be zero in statics. 
For example, if B = 0, / ; = 0 in (12.15) because V x E = 0.) 

Finally, we note there is yet another formula for the force on a dielectric 
given in terms of polarization charges and currents, 

/ < * 

where 

Ppo\ 

PpolE + -jpoi x B 

d. 
- V - P , j p o i = — P + cV x M, 

with the polarization and magnetization fields given by 

P = D - E = | l - - W M = B - H = (p-1)H. 

(12.17) 

(12.18) 

(12.19) 

Again, it is easy to show that if one is calculating the force in a fixed 
direction, so one can freely integrate by parts, for a nonmagnetic medium, 
we recover the expected force including the Abraham term: 

(dr) 
p2 i a 
_ V « + - S ( e - 1 ) E X B (12.20) 

t^The first derivation there is based incorrectly on the formula for the force given in the 
following paragraph, while the second is based on an obviously incorrect extrapolation 
from the vacuum stress tensor, which of course gives vanishing stress. 
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But the integrand in (12.17) is not interpretable as a force density from 

which the stress may be computed. In effect, it is t ha t interpretation tha t 

Eberlein uses in Ref. [413]. 

12 .4 B u l k E n e r g y 

More recently there has been a proposal tha t , indeed, the bulk energy 

result of Schwinger is relevant (of course, it is correct) [422, 423, 424]. 

These authors make an issue of the subtraction of the uniform medium 

contribution, implying, it would seem, tha t we were in error in Refs. [16, 

37]. Since this is a serious issue with experimental consequences, and since, 

admittedly, there are subtle issues of principle involved here, in this section 

we wish to re turn to this point and provide further evidence for the result 

(12.2). We will explain more fully why this subtraction was made, indicate 

tha t it has a rather long history in Casimir effect calculations, and was 

in fact made by Schwinger in [103, 104] before he abandoned the effort to 

recalculate the Casimir effect for a dielectric ball. This is supported by the 

connection established in Sec. 5.9 between the Casimir effect and van der 

Waal forces, because the same finite Casimir energy (12.2) can be obtained 

from the latter. Indeed, it is self-evident tha t pairwise van der Waals forces 

must give rise to a net force proportional to (e — l ) 2 , not proportional to 

e - 1 as in (12.1). 

It is completely manifest t ha t (5.19) does not have a well-defined limit as 

5 —> 0 —it is quartically divergent. Indeed, it is easy to show as Refs. [422, 

423] do, tha t the quartically divergent term here corresponds precisely to 

the Schwinger result (12.1) when e' = p! = 1, fi = 1. However, it is also 

quite clear tha t the calculation is not yet done when we have reached this 

point. As we stated in Ref. [37], and repeated in Sec. 5.2, "We must remove 

the term which would be present if either medium filled all space (the same 

was done in the case of parallel dielectrics [ l l ]) ." When we look at the 

latter reference, we see immediately the point. Again to quote, this time 

from [11]: "These terms [to be subtracted] correspond to the electromag­

netic energy required to replace medium 1 by medium 2 in the displacement 

volume. (Since this term in the energy is already phenomenologically de­

scribed, it must be cancelled by an appropriate contact term.)" (See also 

the discussion in Chapter 3.) Wha t we were saying there, in the present 

context, is t ha t the term in the energy corresponding to the boundary-
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condition-independent Green's function 

Fl0) =ikjl{kr<)hf){kr>), (12.21) 

must be removed, because it contributes (a formally infinite amount) to the 
bulk energy of the material, which is already phenomenologically described 
in terms of its bulk properties. In fact, we are not creating material, e.g., 
water, we are simply displacing it when we insert the bubble, and force the 
bubble to expand and contract. The energy per unit element of medium 
is therefore not changed. (The density of the gas in the bubble of course 
changes greatly, but the zero-point energy of that relatively dilute medium 
is certainly insignificant because n w 1. In any case, the effect of this 
density change is also included in the phenomenological description.) 

Indeed, the spectacular agreement between the the Lifshitz theory of 
parallel dielectrics [7, 8], rederived in Ref. [ll] and described in Chapter 3, 
and the beautiful experiment of Sabisky and Anderson [66] seems strong 
vindication of this subtraction procedure. 

Further evidence that we are on the right track is provided by Schwinger 
himself. In the first reference in [104], where he rederives the result for 
parallel dielectrics, he explicitly removes volume and surface energies: 

one finds contributions to E that, for example, are propor­
tional . . . to the volume enclosed between the slabs. The im­
plied constant energy density—independent of the separa­
tion of the slabs—violates the normalization of the vacuum 
energy density to zero. Accordingly, the additive constant 
has a piece that maintains the vacuum energy normaliza­
tion. There is also a contribution to E that is proportional 
to [the area], energy associated with individual slabs. The 
normalization to zero of the energy for an isolated slab is 
maintained by another part of the additive constant. 

Admittedly, the situation is more clear-cut in the parallel-plate geome­
try. However, in the following paper (the second reference in [104]) where 
Schwinger begins to set up the problem for the spherical geometry (but 
leaves the details to Harold,#) a close reading shows a similar subtraction is 

'•t-Harold—the "Hypothetical Alert Reader of Limitless Dedication"—makes his first ap­
pearance in Ref. [119]. He is, of course, a tribute to Schwinger's older brother. See 
Ref. [147]. 
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implicit. Unfortunately, when Schwinger went on to apply Casimir energy 
to sonoluminescence in [35], he did not make use of the general analysis 
in [103, 104]. Instead, needing an immediate result to confront the phe­
nomenology, Schwinger simply jumped to the unsubtracted, unregulated 
result (12.1)—see the second reference in [35]. 

12.5 Dynamical Casimir Effect 

It might well be thought that it is the "dynamical Casimir effect," not the 
static Casimir effect, that is relevant to sonoluminescence. Unfortunately, 
the former phenomenon is not at all well-studied. It seems plausible that 
the dynamical Casimir effect is closely allied with the so-called Unruh effect 
(probably more correctly attributed to Moore) [426, 427, 428, 429, 433, 101, 
434], wherein an accelerated observer, with acceleration a, sees a bath of 
photons with temperature T, 

T = — . (12.22) 
2TT V ; 

Indeed, the observed radiation in sonoluminescence is consistent with the 
tail of a blackbody spectrum, with temperature ~20,000 K. That is, kT is 
about 1 eV. Let us, rather naively, apply this to the collapsing bubble, of 
radius R, where a = d2R/dt2 ~ R/T2, where r is some relevant time scale 
for the flash. We then have 

kT~——hc, (12.23) 
(CT)2 

or 

„ Ar 10"4cm2 x 10-5eV-cm 10-30eV 
1 eV ~ ~ H 2 24^ 

r 2 ( 3 x lO^cms- 1 ) 2 r2(s2) ' \^-^) 

That is, T ~ 10~15 s, which seems implausibly short; it implies a charac­
teristic velocity R/T ~ 1012 cm/s » c. It is far shorter than the observed 
flash duration, 10~10 s. Indeed, if we use the latter in the Unruh formula 
(12.22) we get a temperature below 1 micro Kelvin! This conclusions seem 
consistent with those of Eberlein [413], who indeed stressed the connection 
with the Unruh effect, but whose numbers required superluminal velocities. 

Let us consider this problem from the point of view of elementary radi­
ation theory. For example, consider the (nonrelativistic) Larmor formula, 
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appropriate to dipole radiation; it gives the power radiated, in Gaussian 
units: 

where d is the electric dipole moment. If our bubble, with N atoms, co­
herently emits radiation, we expect 

Nda 
|d| ~ - r , (12.26) 

where da is an atomic or molecular dipole moment, and r a characteristic 
collapse time for the bubble. Thus the energy emitted during one collapse 
of a bubble in water is 

E~anc(l<P(±y)3&!{£. (12.27) 
\ Vcm/ J {CT)6 

(We are assuming that it is atoms or molecules in an equivalent dense 
volume that are radiating, not the relatively small number of gas molecules 
in the interior.) So with a ~ 10 - 4 cm (the minimum radius of the bubble), 
r ~ 10~10 s (the flash duration), and da ~ 10_8e-cm, we get an energy of 
only E ~ 10~3 eV. This is in spite of the optimistic assumption of coherent 
radiation!* The corresponding velocity across the bubble of 106 cm/s, well 
in excess of the speed of sound, thus precluding the presumed coherent 
radiation process. We would need a much shorter time scale than observed, 
T ~ 10~13 s, to obtain the necessary energy, and then the velocity of the 
bubble walls would only be an order of magnitude less than the speed of 
light! 

We therefore believe that in Eberlein's calculation [413, 414] there is 
an implicit assumption of superluminal velocities.^ We note that the short 
wavelength result of Eberlein, (4.7) of Ref. [413] or (10) of Ref. [414], can 

* Commenting on Schwinger's earlier belief in the phenomenon of cold fusion, and his at­
tempts to explain the result by a coherent interaction with the lattice, Norman Ramsey 
has remarked that it is easy to be fooled: "Nature does not like coherence." (Interview 
of Norman Ramsey by K. A. Milton, 8 June 1999, quoted in Ref. [147], p. 550.) 

t Indeed, if one follows Eberlein and uses a time scale 7 ~ 1 fs (though the experimental 
value seems to be closer to 100 ps) in her model profile, one finds the maximum speed 
of the bubble surface to exceed the speed of light by almost two orders of magnitude. 
Actually, even with such a small 7, we find her result yields an energy output of only 
1 0 - 3 MeV, insufficient to explain sonoluminescence. 
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be cast in the dipole form (12.25) by integrating by parts. Up to factors 
nearly equal to one, 

(*) « a ° , (12.28) 
W E C 

where a(t) is the bubble radius. Because d/c < 1, we find that emission 
energy of 10 MeV requires a time scale of TE ~ 10~17 s. This seems to 
be an implausibly short scale unless remarkable relativistic phenomena are 
involved. (The corresponding speed is a/r ~ 1013 cm/s.) [Incidentally, 
the magnitude of our cutoff estimate, (12.8), also agrees with (12.25) if 
K ~ 1/r. This demonstrates that there is nothing classical about the 
estimate (12.27)]. 

The only plausible origin of such short time scales lies in the formation 
of a shock. In fact, shock wave have now been visualized [391]. In that 
case, velocities can remain nonrelativistic, while accelerations, or deriva­
tives thereof, become very large. Classical shock models of sonolumines-
cence have been proposed by Greenspan and Nadim and by Wu and Roberts 
[399, 397, 398]. In this case, the radiation is supposed to be emitted by 
Bremsstrahlung after ionization of the air in the bubble, or by collision-
induced emission from a basically neutral environment [405]. But this pic­
ture has nothing to do with quantum vacuum radiation. 

However, we must remain open to the possibility that discontinuities, 
as in a shock, could allow changes on such short time scales without re­
quiring superluminal speeds. Indeed, Liberati et al. [417, 418, 419, 420, 
421], following Schwinger's earlier suggestion [35], assume an extremely 
short time scale, so that rather than the adiabatic approximation discussed 
above being valid, a sudden approximation is more appropriate. We there­
fore turn to an analysis of that situation. 

A free interpretation of the picture offered by Liberati et al. [417, 418, 
419, 420, 421] is that of the abrupt disappearance of the bubble at t — 0, as 
shown in Fig. 12.1. On the face of it, this picture seems preposterous—the 
bubble simply disappears and water is created out of nothing.* It may be 
no surprise that a large energy release would occur in such a case. Further, 
the static Casimir effect calculations employed in these papers are invalid 

t in a recent comment, Liberati et al. [435] insist it is not the matter which changes, 
but the dielectric constant; but since the matter here is characterized by its electric 
properties, this distinction seems semantic. 
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t = 0- t = 0+ 
Fig. 12.1 The sudden collapse of an otherwise static bubble. 

in this instantaneously changing model. Therefore, rather than computing 
Bogoliubov coefficients from the overlap of states belonging to two static 
configurations, let us follow the original methodology of Schwinger [35], 
which appears to be essentially equivalent. 

As in Schwinger's papers, let us confine our attention to the magnetic 
(TE) modes. They are governed by the time-dependent Green's function 
satisfying [see (5.35)] 

(d0e(x)d0 - V2)G(x, x') = 5{x - x'). (12.29) 

The photon production is given by the effective two-photon source [see 
(13.10)] 

S(JJ) = i5G~l = id05e(x)d0. (12.30) 

The effectiveness for producing a photon in the momentum element centered 
about k is (see Ref. [119]) 

Jk = v^tI(-dx)e~t(k'r~iaJt)J{xl UJ = H (12-31) 
Schwinger considered one complete cycle of appearance and disappear­

ance of the bubble, which we assume disappears for a time r . From (12.31), 
the probability of producing two photons is, with V being the bubble vol­
ume, 

| Jk Jk, |2 oc (e' - 1) V sin2 tor S(k + k')V. (12.32) 
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The total number of photon pairs emitted is then, if dispersion is ignored, 

where the cutoff wavelength is given in terms of the cutoff wavenumber in 
(12.7) by K = 27r/A. Such a divergent result should be regarded as suspect. 
It was Eberlein's laudable goal [413] to put this type of argument on a 
sounder footing. Nevertheless, if we put in plausible numbers, y/e — 4/3, 
R = 4 x 10~3 cm, and, as in Schwinger's earlier estimate, A = 3 x 10~5 cm, 
we obtain the required N ~ 106 photons per flash. 

The problem with this estimate is one of time and length scales—for the 
instantaneous approximation to be valid, the flash time T/ must be much 
less than the period of optical photons, T0 ~ 10~15 s. This is consistent 
with the discussion of the Unruh effect above, and is acknowledged by 
Liberati et al. [417, 418, 419, 420, 421]. On the other hand, the collapse 
time TC ~ 10~5 s is vastly longer than 77, and is therefore totally irrelevant 
to the photon production mechanism. In fact, the observed flash time is 
of order 10 - 1 0 s, so as noted above, the adiabatic, not the instantaneous, 
approximation would seem to be valid. Moreover, the flash occurs near 
minimum radius, and thus the appropriate value of R in (12.33) would 
seem to be at least an order of magnitude smaller, R ~ 10~4 cm. This 
would lead to N < 103 photon pairs, totally insufficient. 

We conclude this chapter by candidly admitting that the probability 
of the relevance of the dynamical Casimir effect to sonoluminescence, al­
though small, remains nonzero. This is because the dynamical Casimir 
effect, in general, has not in fact been developed at all. As we remarked 
above, radiation from a moving mirror is well-studied [426, 412, 429, 433], 
but for cavities, little beyond perturbation theory, valid for "small but ar­
bitrary dynamical changes" [436, 437, 438], hardly relevant to the profound 
changes seen in sonoluminescence, is known. Photons may be produced 
resonantly by vibrating mirrors in a cavity [439], but the effects are small. 
See Ref. [440] for a review of quantum radiation produced by an accelerated 
dielectric body. Here is an area ripe for development.§ 

§Here are some relevant results: Motional Casimir forces were considered by Jaekel and 
Reynaud [441]; the (very small) mechanical response of the vacuum was studied by 
Golestaina and Kardar [442]; and Kenneth and Nussinov examine the (very small) 
Casimir radiation [443] from accelerated objects. 





Chapter 13 

Radiative Corrections to the Casimir 
Effect 

Everything we have considered so far in this book has been at the one-
loop level. This reflects the fact that in general the Casimir effect itself is 
quite small, so higher loop corrections seem beyond experimental reach. Yet 
theoretically, such corrections are of great interest, and could potentially be 
of great importance in hadronic and cosmological applications. Given the 
50-year history of the Casimir effect, it is somewhat surprising that rather 
little has been done in this direction, and that there exists controversy on 
the appropriate methodology. In this Chapter, we will present a calculation 
of the simplest two-loop correction to the Casimir effect for the geometry 
of parallel plates, and discuss the corresponding calculation for a sphere. 
These calculations were first carried out by Bordag and collaborators [105, 
107, 444, 445, 446, 447]; see also Ref. [106] for a self-interacting scalar field 
inside a cube, with periodic boundary conditions. Methods of calculating 
loop diagrams in boxes, relevant to bag model, were first discussed by 
Peterson, Hansson, and Johnson [448]. 

In the spirit of the preceding Chapters it would be natural to compute 
the vacuum expectation value of the two-loop correction to the stress-energy 
tensor. That, however, is unnecessarily complicated. Following Ref. [107], 
we sketch a formalism in the next section which requires only the compu­
tation of the two-loop vacuum graph. The one-loop contribution of this 
formalism, the familiar trace-log of the propagator, yields the usual 1-loop 
Casimir energy. 

In Sec. 13.2 we then use this formalism to compute the QED radiative 
correction to the Casimir energy to first order in the fine structure constant 
a = e2 /Anhc for the special case of parallel conducting plates with the 

255 
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property that the photon propagator satisfies perfect conductor boundary 
conditions on the plates, while the plates are transparent to the electrons.* 
Since for nearly any conceivable experimental situation the plate separa­
tion is large compared to the Compton wavelength of the electron, Ac, the 
correction is extremely small. The energy per unit area of the plates is 
through two loops 

where (i is the mass of the electron. 
Since this is so phenomenologically irrelevant, we merely quote the result 

of Ref. [107] in Sec. 13.3 for the corresponding calculation for a perfectly 
conducting spherical shell. For that geometry, there is also a logarithmic 
correction term: 

Es = ° " ° 4 6 1 7 6 (l - 0.016413— log(fia) - 0.14040—^ , (13.2) 

which, like (13.1) is derived in the approximation that fia S> 1. Of course, 
where these corrections might become significant is in the bag model, where 
the radiative corrections are those due to QCD. Then, not only is the bag 
radius a ~ Ac for the quarks, but we must take into account the fact that 
the quark propagators experience the bag boundary, that is satisfy the bag 
boundary condition (6.26). To my knowledge, such a calculation has yet to 
be attempted. 

A further theoretical issue of some interest is discussed in Sec. 13.4. This 
is the discrepancy of the above result with that of Kong and Ravndal [449, 
450] who attempt to compute the radiative corrections to the Casimir ef­
fect with the same boundary conditions but using the Euler-Heisenberg 
Lagrangian as an effective Lagrangian. For parallel plates they obtain a 
much smaller correction, E^ ~ (a2 /a3)(A c /a)4 . It is clear that this ap­
proach does not begin to capture the relevant physics. 

'According to Ref. [445], inclusion of a boundary condition for the spinors would give 
rise to an exponentially small correction if Ac >C a. 
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13.1 Formalism for Computing Radiative Corrections 

We will develop the formalism in the simple context of a scalar theory; 
the generalization to electrodynamics is rather immediate. In particular, 
the radiatively corrected Casimir energy is given for QED by an expression 
which is merely twice that of the scalar theory for the case of the parallel 
plate geometry. (Of course, the vacuum polarization operator is different.) 

We adopt an approach given, for example, in Schwinger's first Casimir 
effect paper [2]. Consider the vacuum amplitude, or generating function, 
given in terms of external sources K(x) in a region characterized by some 
bounding surfaces: 

{Q+\QJ)K = eiWW, (13.3) 

where 

W[K] = ^ I' (dx){dx')K(x)G{x,x')K(x'), (13.4) 

where G{x, x') is the appropriate scalar propagation function for the region 
in question. We can also introduce an (effective) field according to 

4>(x)= f(dx')G(x,x')K{x'), (13.5) 

or in terms of the inverse operator G _ 1 , 

J {dx")G-\x,x")G(x" ,x') = 8(x-x'), (13.6) 

we can express the source in terms of the field, 

K(x)= [(dx^G-^x,^)^'). (13.7) 

Now if the geometry of the region is altered slightly, as through moving 
one of the bounding surfaces, the vacuum amplitude is altered: 

6WiJ] = \ I\dx){dx')K{x)5G{x,x')K{x') 

= - i /\dx){dx')4>{x)5G-l{x,x')cj){x'). (13.8) 
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Upon comparison with the two particle term in the expansion of the vacuum 
amplitude, 

eiW\K\ = eij(dx)K(x)4>(x) = 1̂  
i / (dx)K(x)cf>(x) . . . (13.9) 

we see that the variation of the inverse Green's function is effectively a 
two-particle source, 

iK(x)K(x') -SG-\x,x'). (13.10) 

Therefore, the change in the generating function is given by 

5W = %- I\dx)(dx')G{x,x')5G-l(x'\x) 

= -%- f\dx)(dx')SG{x,x')G-\x',x). (13.11) 

Formally, if we regard space-time coordinates as matrix indices, we can 
write this in the familiar form of a trace: 

SW -TrSlnG. (13.12) 

Thus for a static situation we can read off the following expression for the 
energy of the system, which is to be supplemented by an infinite constant: 

£ = — TrlnG, (13.13) 

where T is the "infinite" time that the configuration exists. Let us directly 
evaluate this for the one-loop scalar propagator in the interior of two parallel 
plates (on which the field vanishes), given by (2.14) and (2.43). That means 
that the energy per unit area of the plates is given by the expression 

F_E_ i f dco d2k ly* 1 
J"a2J 2^ (2TT)2 a ^ n (mr/a)2 - A2 ' 

(13.14) 

As usual, we perform the Euclidean rotation, and change to polar coordi­
nates as in (2.25), with the result 

1 _°°_ f°° 
S=—^y^l dKK2\n[K2 + (mr/a)2}. (13.15) 4n ti-Jo 
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We now integrate by parts, and carry out the sum over n using (7.26). 
When terms which are merely nonnegative powers of a are omitted, as 
being contact terms, we are left with 

/•oo -I 2 

£ = ° / dKK3^ = — ^ , (13.16) 
67r270 e 2 K a _ 1 1440a3' v ; 

where we encounter just the integral we found earlier in (2.30) for d = 2. 
Of course, this is precisely the scalar Casimir energy (2.9) for the case of 
parallel plates. 

13.2 Radiative Corrections for Parallel Conducting Plates 

The "trace-log" formula (13.13) is immediately extended to describe higher-
loop corrections. We simply write the Green's function in perturbative 
form, 

G = G0(1+UG0), (13.17) 

where the polarization operator II is regarded as small, and then the energy 
is given by 

£ = ^ T r l n G 0 + ^ T r I I G o . (13.18) 

Here we take GQ to be the propagator used above, subject to the Dirichlet 
boundary conditions at z = 0, z = a [see (2.20)]: 

^•^-- / (sr""""!-
<Pkik(x-x') 1 sinAz< sinA(z> - a) 

iAo 
(13.19) 

where the three-dimensional momentum integration is over frequency and 
the two transverse momenta, 

d3k _ duj (dkx) 

(2^)3 = 2^ OKF' ( 1 3 '2 0 ) 

the three-dimensional scalar product refers to the same variables, 

k(x - x') = -Lo(t - t') + k ± • (r - r ' )±, (13.21) 

and A is the three-dimensional (Minkowski) invariant: 

\2
=UJ

2-kl. (13.22) 
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To evaluate the second term in (13.18) we consider the case in which 
the particles ("electrons") in the vacuum polarization operator II do not 
experience the effects of the boundaries, so we can use the usual free-space 
expression for that operator. Expanding out the meaning of the trace, we 
have the following expression for the correction to the energy per transverse 
area: 

d4k n m F A~ r j . ' A M ' ) s i l l ^ < s m % - f l ) ^H/IW^V 
A sin Xa 

(13.23) 
Carrying out the integrat ion over z and z', we obta in 

pa pa 

dz dz' 
Jo Jo 

ikzi-z z>) sin Xz< sin X(z> - a) 

1 ( A2 \ 
= — —r- I Xa sin Xa — 2 — [cos Xa — cos kza] ) . (13.24) 

Here k2 = fc2 — A2 is the four-dimensional Minkowski scalar. When this is 
inserted into (13.23) we obta in two te rms which are nonnegat ive powers of 
a, which we omit . We are left wi th 

£(2) f d4k U(k) X r ,A„ , , , 
/ 7 ^ 7 TTWT ^ - T - e - c o s kz°\ • (13.25) 

J (2?r)4 ( /c 2) 2sinAa L J v ' 
This is, apar t from a factor of two, exactly the expression given by Bordag 
and Lindig [107]. 

Supplying t h a t factor, we now evaluate this correction in the Q E D case. 
T h e vacuum polarization can be wri t ten in the spectral form* 

IKt) = (*>)•£ . B ^ g L . , (13.26) 

with the spectral function 

r2,_ a 1 ^ 4 / i W , , 2M
2 

a^ = ̂ w\l-w) [1 + ^ ) - (13-27) 
(See, for example Ref. [451].) After performing the Euclidean ro ta t ion on 

tThe (k2)2 prefcictor is required by gauge invariance; in physical terms the structure is 
such that the photon pole of the propagator at k2 = 0 is not disturbed. 
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the frequency UJ, and introducing the variable K, we write the correction as 

1 — cos k^a] K 1 /*oo />oo **oo i 
f(2) = _ L / dM2a(M2) / K2dK / dfc3

J 

27r hu? JO J-OO / 4 M2 ./n ./ „ fc2 + K2 + M 2 s i n h ^ a ' 

(13.28) 

The ^3 integrals are elementary: 

/ 

°° „ifc30 

, d f c 8 ^r^ = r • (13-29) 
so we are left with a double integral: 

£(2) = 1 /°° rfM
2a(M2) f ^ , 1 = fe-"° - e - ^ + ^ - ) . 

2TT 2 J4M
2
 7 O

 s m h « a V « 2 + M 2 V 7 
(13.30) 

If we consider the regime where the plate separation is large compared to 
the Compton wavelength of the electron, \xa ^> 1, the second exponential 
factor in the above is negligible, and the K integral reduces to 

2 A 1 ( 1 3 31) 
0 e2Ka-lM 1 2 0 M a 4 ' V ' ; 

The remaining spectral mass integral becomes elementary upon making the 
substi tution v = y/\ — 4/U2/M2: 

£(2) air f dvv2 / 3 1 

Jo 
»--v2 

720iia4 Jo y r ^ 2 \^2 2 

anz 

2560/xa4 (13.32) 

which agrees with (13.1), first found in [105]. 
In general, it is not difficult to integrate the double integral (13.30) 

numerically. The result is shown in Fig. 13.1. We see tha t the asymptotic 
result (13.32) is only some 20% high at fia — 1, and becomes extremely 
accurate for larger fia, but for smaller values of pta instead of diverging as 
the expression (13.32) indicates, the energy tends to a constant value as 
/id —* 0, 

<f(2)(0) = -(0.00557745). (13.33) 
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10'' 

10'2 \ \ \ - \ 

3 

10'3 -

0.0 2.0 4.0 6.0 8.0 10.0 

Fig. 13.1 Graph of the QED radiative correction for the Casimir effect (solid line) for 
parallel plates as a function of the separation of the plates a relative to the Comp-
ton wavelength 1/yu of the electron. In this calculation it is assumed that the plates 
are perfect conductors, but that the boundaries are transparent to the electrons. The 
asymptotic result for f i a > 1 (13.32) is also shown as the dashed line. 

13.2.1 Other Work 

For Xcp4 in D + l dimensions between parallel Dirichlet plates, Albuquerque 
has shown that the pressure develops a divergence at two loops if D is even 
[452], presumably a reflection of the divergences seen in general in Casimir 
calculations in even D. 

13.3 Radiative Corrections for a Spherical Boundary 

For the case of QED, it appears that the radiative corrections to the Casimir 
effect are far beyond experimental reach. Therefore, we have merely quoted 
the result, derived by Bordag and Lindig [107] in (13.2). Where such cor­
rections could be important is in the bag model of hadrons, where the QCD 
corrections could be large. Unfortunately, corrections in that case have not 
yet been calculated. The only calculation in a spherical geometry extant 
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[107] is that for QED in which, as in the previous section, the boundary 
is transparent to the fermions, which is not the case with quarks. More­
over, the only explicit result given in Ref. [107] is shown in (13.2), which 
applies only in the case when the radius of the sphere is large compared 
to the Compton wavelength of the fermion. Again, this condition does not 
apply to quarks in a hadronic bag.-* However, the correction is probably 
not large. If we evaluate the QED correction (13.2) at fia = 1 (the limit 
of applicability of the formula—see Fig. 13.1) we obtain a reduction of the 
Casimir attraction by 0.1%, while replacing a = 1/137 by as ~ 2 boosts 
this reduction to 30%. This is comparable to the present uncertainties in 
the hadronic Casimir correction, so it certainly would be worthwhile com­
puting the correction for QCD. 

13.4 Conclusions 

Given the still primitive understanding of the Casimir effect, it is perhaps 
not surprising that few higher-loop calculations exist. Such corrections are 
certainly not important in electrodynamics. If our understanding of the 
implications of vacuum fluctuations for hadronic physics improves, how­
ever, higher-loop corrections will be important. It would be very much 
worthwhile to carry out a calculation of the two-loop corrections to the 
Casimir effect in a spherical bag, where the quarks, as well as the gluons, 
are subjected to the bag boundary conditions. 

There seems to remain an element of controversy concerning the radia­
tive corrections presented here and in the literature [105, 107, 445]. Kong 
and Ravndal [449] suggested that the Euler-Heisenberg Lagrangian§ [454, 
455] 

-EH — —-r - TT^- / ~ T e 

87T2 ./n S3 

0 

, .r. RecoshesX 2, (» 
lm cosh esX 3 

(13.34) 
which describes the scattering of light by light, may be regarded as an 
effective Lagrangian, for calculation of higher-loop corrections to the single 

*A typical value for a light quark is fj,a ~ 0.05. 

§It may be of interest to note that the Casimir-Euler-Heisenberg effective action was 
considered in Ref. [453], in which £ E H w a s derived in a space in which one dimension 
is compactified with antiperiodic boundary conditions. 
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photon loop process. Here the invariant field strength combinations are 

f=)-F2 = li(K
2-E2), g=^-F*F = E H, (13.35) 

*Fl_ll/ = \^p,Va.pFa^ being the dual field strength tensor, and the argument 
of the hyperbolic cosine in (13.34) is given in terms of 

X = [2(JT + j0)]1/2 = [ ( H + jE)2]i/2_ ( 1 3 > 3 6 ) 

Since (13.34) is derived under the assumption that the external photon 
lines carry zero momentum, and involves only a single electron loop, it is a 
priori difficult to see why this should be at all relevant to computing high-
loop corrections; indeed, the fact that use of (13.34) leads to qualitatively 
different behavior than that found by a full calculation demonstrates the 
inapplicability of this intriguing idea.^ 

Ravndal and Thomassen [457] now attribute this discrepancy to a pre­
viously omitted surface term in the effective theory, which has an unknown 
numerical coefficient which can be adjusted to reproduce the result (13.1)— 
however, this apparently only reproduces the /JO > 1 limit. Melnikov 
[458] proposes instead to add a new bulk term with a judiciously chosen 
coefficient depending on the plate separation to reproduce (13.2). Both 
"solutions" seem rather contrived, to save a description which cannot be 
regarded as fundamental. 

^For additional discussion of why the effective Lagrangian approach is ineffective, see 
Ref. [445]. For another example of the failure of £ B H to capture the relevant higher-loop 
corrections, see Ref. [456]. 
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Conclusions and Outlook 

In this book, we have tried to survey the subject of the Casimir effect, which 
can be thought of as describing "macroscopic" manifestations of zero-point 
fluctuations in quantum fields. (The word macroscopic is in quotes be­
cause applications of these ideas have been made to hadrons, of a size on 
order of fm, 10~13 cm, and to cosmology, where the fundamental scale 
is the Planck length, ~ 10~33 cm.) The phenomenon probes the most 
fundamental quantum idea, that of the uncertainty principle and the as­
sociated zero-point energy of a quantum oscillator. It is quite remarkable 
that in the 75 years since the birth of quantum mechanics, so little un­
derstanding of the role of zero-point energy exists. Textbooks even used 
to assert that these fluctuations are unobservable [459]. It was the genius 
of Casimir in the years immediately after the Second World War to rec­
ognize that these quantum fluctuations, having their action-at-a-distance 
counterpart in the van der Waals forces between neutral molecules, could 
be observed in the laboratory as forces between macroscopic objects [l]. 
With the fundamentally identical theory of Lifshitz [7] verified experimen­
tally in the 1970s [66], no one could seriously doubt the reality of the effect, 
although, for psychological reasons, what convinced most physicists seemed 
to be the recent measurements between conducting lenses and plates [68, 
71, 75]. 

So what have we learned in the more than 50 years since Casimir's 
brilliant observation? Remarkably little! This has not been for want of 
theoretical activity, as recounted a few years ago by Bordag [460]. The 
yearly number of papers per year citing the Casimir effect now must ap­
proach 100. (Only a select subset of those papers have been cited in 
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this book.) There have been some remarkable milestones: Boyer's dis­
covery [13] that the Casimir force on a conducting spherical shell in repul­
sive; the study of the dimensional dependence of the Casimir effect by 
Bender and Milton [32]; the discovery of the unique finite part of the 
Casimir energy for a dilute dielectric sphere by Barton and others [40, 
39], and the equivalence of that energy with the renormalized sum of van 
der Waals energies [38], which brings the saga full circle to its starting 
point. But we lack fundamental understanding. Why should a sphere give 
a repulsive rather than an attractive self-stress? Why is the stress on an 
even-dimensional hypersphere infinite? It seems to do little good to argue, 
as does Barton [219], that the leading infinite term is, of course, attrac­
tive, so we have no hope of understanding the sign of the subleading finite 
terms, because this begs the issue in cases when the results are manifestly 
finite, for spherical and cylindrical shells and the like. And new puzzles 
keep emerging. Why should a dilute dielectric cylinder have a zero Casimir 
self-stress, when a dilute sphere experiences a repulsion? 

Applications are burgeoning. There is much recent work on applying 
Casimir energies to cosmological models, and the time is probably ripe to 
revisit applications at the hadronic scale. The Casimir effect's possible role 
in explaining sonoluminescence remains intriguing. Yet what is required to 
confront phenomena is further development of the theory. 

The subject of radiative corrections to the Casimir effect is in its in­
fancy [107]. A proper calculation with interacting quarks and gluons could 
have significant implications in our understanding of nuclear physics. As 
for cosmology (and perhaps for sonoluminescence) what is required are true 
dynamical calculations, where the boundaries (or geometry) are not chang­
ing perturbatively or adiabatically. 

The recent impressive experiments with atomic force microscopes [71, 
72, 175], and the very recent micromachined torsional measurement [75] 
(like the corresponding experiments testing Newton's law to the 100 /im 
level [362]) suggest we could be on the verge of significant new experimental 
input to the field. For example, if a 2-dimensional experiment could be 
devised to measure the stress on a circle, we might hope to understand the 
breakdown of the theory in even dimensions. Moreover, it is not fanciful 
to imagine that we are on the threshold of practical applications of the 
Casimir effect. (Some applications are suggested in Ref. [75].) It is well 
to remember that physics is an experimental science. After all, we recall 
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that Schwinger could not have carried the formalism of QED to its logical 
conclusion without the impetus of the postwar experiments, announced at 
the Shelter Island Conference, which overcame prewar paralysis by showing 
that the quantum corrections "were neither infinite nor zero, but finite and 
small, and demanded understanding" [461]. 

So this book does not represent a survey of a completed field, but a 
status report of a fundamental aspect of quantum field theory, where the 
most important questions have yet to be addressed. This book will have 
served its role if it helps stimulate the next stage in that development. 





Appendix A 

Relation of Contour Integral Method 
to Green's Function Approach 

Most of this book is devoted to the calculation of the Casimir effect in dif­
ferent situations using the Green's function approach, which is deemed the 
most physical. However, it cannot be denied that zeta-function techniques 
and related methods are very efficacious, and an example of such a method 
was given in Sec. 7.2. Other examples in the text occur in the evaluation 
of the Casimir energy for a dilute dielectric sphere in Sec. 5.7, and of the 
Casimir energy in Kaluza-Klein spaces in Sec. 10.1.4. Here we offer a deriva­
tion of the starting point of the first of these examples from the Green's 
function approach. We will not discuss the basis of zeta-function evaluation, 
however, since treatises describing such methods are readily available [271, 
272].* 

Specifically, we sketch the relation of the formula (7.50) to the Green's 
function formalism. We will confine our remarks to the case of a mass-
less scalar field, as the generalization to, say, electromagnetism is rather 
immediate. We take the scalar Green's function to satisfy the differential 
equation (2.13) 

(Jj2-V2)G(X>X')=S(X-X')> (A1) 

subject to appropriate boundary conditions. The stress tensor (2.21) (use 

*Beneventano and Santangelo [462] claim discrepancies between ^-function and cutoff 
regularization, yet both methods reproduce the known results for massive fields in a 
d-dimensional box. See also the paper of Elizalde [463] responding in particular to 
complementary claims of Svaiter and Svaiter [464]. 
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of the conformal stress tensor has the same effect) is 

T"" = d"(j)dv(j) - l-g^dx^cj (A2) 

so, since the Green's function is given as a vacuum expectation value of a 
time-ordered product of fields (2.23), 

G{x,x') = i(T<f>(x)(f>(x')), 

the energy density is 

u = (T00) = -^[d°d0' + V • V']G(x,x') 

(A3) 

(A4) 

To compute the total energy, we integrate u over all space; then we can 
integrate by parts on one of the gradient terms, and use the differential 
equation (Al), omitting the delta function because the limit of point coin­
cidence is understood: 

V - V 
dt2' 

(A5) 

(The net effect is that the Lagrangian term in TM" does not contribute.) In 
terms of the Fourier transform of the Green's function 

G ( x , x ' ) = / f V M t - ° < L ( r , r ' ) , 

the Casimir energy is 

(A6) 

(A7) 

Now introduce eigenfunctions of the differential operator V2 subject to 
the same boundary conditions as Qw: 

VVP(r) = ~/c2VP(r), 

5 > P ( r W ; ( r ' ) = <*(r-r'), 
p 

y"(dr)V$(r)Vy(r) = <W-

(A8a) 

(A8b) 

(A8c) 
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Then the Green's function has an eigenfunction expansion 

*—' u>* — ki,+ le 
p p 

(The Green's function is the causal, or Feynman, propagator.) Carrying 

out the volume integration, 

-kj+ie' 
(A10) 

we find tha t the energy can be writ ten in the form 

E=ir %-^ Y, (—J—+—±—A. (AH) 

Here we have retained a t ime splitting, T = t — t' —> 0, which is a technique 

to regulate the divergent expression. Wha t does this integral mean? Since 

the energy must be real, when r is set-equal to zero, the i is to be interpreted 

as an instruction to pick out the negative imaginary part of the integral. 

Because the pa th of integration in ( A l l ) passes above the poles on the 

positive real axis, and below the poles on the negative real axis, t ha t means 

tha t we can replace the integration pa th by a contour C which encircles 

all the poles on the real axis, the positive poles by a contour closed in the 

counterclockwise sense, and the negative poles by a contour closed in the 

clockwise sense (see Sec. 10.1 and Fig. 10.1): 

E = - - ^ - * w o L l n ] T ( w - f c p ) ( w + fcp). (A12) 
871" Jc p 

(We may verify the sign by noting tha t (7.43) is formally reproduced.) This 

is the content of (7.50). The equivalent mathematical result 

— j> Lo—\ng(u>)du> = ^2^0-^(^00, (A13) 

where WQ denotes the zeroes, and UJX the poles, of g(ui) lying within C, 

is called the argument principle—see for example Ref. [182], p. 428. It is 

the mode-sum analog of the Sommerfeld-Watson transformation of part ial 

wave sums [465, 466]. 

The argument principle was apparently first used in this context by van 

Kampen, Nijboer, and Schram in 1968 [149], who rederived the nonretarded 
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part of the Lifshitz interaction between dielectric slabs. Further examples 
of evaluating such mode sums, particularly for a string with massive ends 
(see Appendix B) are given in Ref. [467]. 



Appendix B 

Casimir Effect for a Closed String 

Here we offer another elementary example of the calculation of the Casimir 
energy, for the simple situation of a uniform closed string. Brevik and col­
laborators [468, 469, 470, 471, 472, 473, 474] generalized this by considering 
a piecewise uniform string with a uniform sound speed but different string 
tensions. See also Ref. [475]. A nonuniform sound speed has also been 
considered [476]. 

The uniform closed string may be regarded as a circle, of radius a, 
characterized by a Green's function G{0—9', t—t'), satisfying the differential 
equation 

w-hw)G^-^t-^ = 1a^-^t-^ (B1) 

The solution may be written in eigenfunction form as 

m= — oo 

As usual, the energy density may be obtained from this by differentiation: 

(T00) = -d°d'°G(0,t-t') 
i 

2niJ__0O2Tr ^ m2-uj2a2' K ' 
m= — oo 

We now carry out the m sum by use of (2.45), perform the usual Euclidean 
rotation, w —> iC,, and omit terms which are nonnegative powers of a (can-
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celled by contact terms). We are left with 

<T°°>=-ir"«^T=-^- <B4) 

This is the energy per unit length of the string. The energy is obtained by 
multiplying by the circumference L = 2ira of the string, 

B = -i5-H- (B5) 

Compare this with an open string, with Dirichlet boundary conditions at 
the ends. That is just the Luscher energy (1.35) [83, 477] [see also (6.2) 
and (9.21)], 

7T 
-C>open str ing = ~ t)AT ' \'^^>) 

Periodic boundary conditions give an enhancement of a factor of four, as a 
consequence of (2.49). 

Brevik and Nielsen [468] have considered the case when the material of 
the string consists of two parts, with lengths L\ and L2, L\ + L2 = L. For 
example, in the special case when one of the string tensions is zero (but 
with uniform sound velocity) the energy is shifted by the simple formula 

^"SEtfe + l H - (B?) 

If L\ = L2, AE = 0, which also holds true for any value of the string 
tension. In general, numerical results are given in Refs. [468, 469]. In 
Refs. [470, 472, 471] the division of the string into 2N, and into 3, pieces, 
respectively, is considered. The various cases are summarized in Ref. [473], 
while an interesting scaling property for the 2N string, that EN(X)/EN(Q) 

is nearly independent of N, where x = T1/T2 is the ratio of string tensions in 
the two portions of string material, was discovered in Ref. [474]. The decay 
spectrum of a two-piece string was considered in Ref. [478]. A recent paper 
discusses the thermodynamics of the piecewise uniform string [479]. An 
elegant regularization method was given by Li, Shi, and Zhang [475]. The 
difficulties inherent in the more realistic case of a nonuniform string, where 
the sound speed is different in different sectors, is addressed in Ref. [476]. 
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B . l Open Strings 

D'Hoker and Sikivie [480] considered the Casimir energy between beads 
on an open string. The Liischer energy (B6) is recovered in the limit of 
large masses. The interaction (always nonnegative) between beads on d-
dimensional membranes due to quantum fluctuations of the membrane were 
considered by D'Hoker, Skivie, and Kanev [481]. 

Actor, Bender, and Reingruber [482] considered the Casimir effect on a 
one-dimensional lattice, recovering the continuum result (B6), the effect of 
masses [contained in (2.54)] and the effect of a lattice potential. Elizalde 
and Odintsov [483] calculated quantum corrections to the Liischer potential, 
which renormalized the string tension; they interpreted the phenomenon as 
a kind of nonlocal Casimir effect. 

Kleinert, Lambiase, and Nesterenko [484, 485] considered the interquark 
potential in the model of the Nambu-Goto string with point masses /J at 
the ends. The Liischer term is recovered in either the fi = 0 or n = 
oo limits. The deconfinement temperature is not affected by finite quark 
masses, however [486]. 
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In its simplest manifestation, the Casimir effect is a quantum force of attraction 

between two parallel uncharged conducting plates. More generally, it refers 

to the interaction — which may be either attractive or repulsive — between 

material bodies due to quantum fluctuations in whatever fields are relevant. 

It is a local version of the van der Waals force between molecules. Its sweep 

ranges from perhaps its being the origin of the cosmological constant to its 

being responsible for the confinement of quarks. 

This monograph develops the theory of such forces, based primarily on 

physically transparent Green's function techniques, and makes applications 

from quarks to the cosmos, as well as observable consequences in condensed 
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